

C7 -13iC Absolute Value Series

AC servo driver

Design and debugging part

Раусис.сом

C€ ISO9001

Safety Instruction	6
Chapter I Installation	8
1.1 Servo Driver Mounting Dimensions	8
1.2 Installation Situations	14
1.3 Installation Direction and Space	15
Chapter II Functional Overview	16
2.1 Servo C7 Series Basic Functions	16
2.2 Servo Selection	17
Chapter III Wiring	24
3.1 Notes	24
3.2 Wiring Requirements	24
3.3 Wiring Methods	25
3.4 Typical Wiring	26
3.5 Servo Motor Brake Wiring Diagram	30
Chapter IV Interfaces	31
4.1 Servo Control Power Supply, Definition of High Power	
Terminal	31
4.2 Cn1 Interface, Control Signal Input/Output Definition	32
4.3 Cn2 Interface, Encoder Input Signal Definition	41
4.4 Cn3 Interface, 485 Interface Definition	42
4.5 Principle of Switching Value Input Interface	43
4.6 Principle of Switch Output Interface	43
4.7 Principle of Pulse Quantity Input Interface	44
4.8 Pulse Input Form	45
4.9 Principle of Analog Input Interface	45
4.10 Feedback Interface Principle	47

Contents

4.11 Second encoder interface definition	.50
Chapter V Display and Operation	.51
5.1 Panel Operations	51
5.2 Parameter Structure Composition	. 52
5.3 Parameter Monitoring Mode (DP)	. 53
5.4 Parameter Modification Mode (PA)	.56
5.5 Parameter Management Mode (EE)	56
5.6 JOG INCHING OPERATION MODE (Jr)	.58
5.7 Speed Test Operation Mode (Sr)	.59
5.8 Analog Auto Zero Mode (AU)	.60
5.9 Encoder Auto Zero Mode (CO)	61
5.10 Open Loop Operation Mode (OL)	.62
5.11 Encoder Write Mode (WR)	.62
Chapter VI Parameters	53
6.1 Parameter List [PA Mode]	.53
6.2 [Table of PE Functional Parameters]	. 59
6.3 [PF Motor Parameter Table]	64
6.4 [Explanation of PA Functional Parameters]	.69
6.5 [Detailed Explanation of PE Functional Parameters]	.89
6.6 [Parameter Explanation of PF Motor] (Bus Drive does not	
have this function at present)	93
Chapter VII Troubleshooting and Diagnosis	96
7.1 Alarm List	.96
7.2 Troubleshooting	.99
Chapter VIII Debugging and Application	08
8.1 Quick Debugging Note Item 1	08
8.2 Position Control (Quick Adjustment of Parameters	

After Power-on)	109
8.3 Speed Control (Quick Adjustment of Parameters After	
Power-on)	111
8.4 Torque Control (Quick Adjustment of Parameters After	Power-on)
8.5 Dynamic Electronic Application	113
8.6 Debugging Typical Problems	114
Chapter IX Servo Motor Part	116
9.1 Servo Motor Plug Definition and Connection	116
9.2 Servo Motor Selection Instructions	118
9.3 Size and Selection Parameters of Servo Motor	119

Appendix	140
Appendix1	
Appendix 2	
Appendix 3	
Appendix 4	
Appendix 5	
Appendix 6	
Appendix 7	
Appendix 8	
Appendix 9	
Appendix 10	
Appendix 11	
Appendix 12	
Appendix 13	

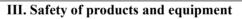
Safety Instruction

I. Personnel security

■ This product is a high-voltage and high-current product, which ensures that personnel are in the safe area of the moving mechanism when electrified.

■ This product is high voltage and high current product, and wrong operation may cause accidents such as arc burn and electric shock.

■ It is forbidden not to operate the wiring and electrify according to the instructions.


II. Safe occasions

■ This product is high voltage, high current products, it is forbidden to use electricity in combustible gas, corrosive gas, otherwise it may cause fire, explosion...

■ It is forbidden to use electricity at the dripping place of flammable and explosive materials, which may cause fire and explosion.

■ It is forbidden to use it under the conditions of high humidity and moisture metal powder, which may cause electric shock to oneself and others, and other dangerous situations.

■ This product is a high voltage and high current product, and wrong connection will cause damage to the product.

■ PE terminal must be grounded, and ensure that the ground wire is reliably grounded.

■ L Series of this product is suitable for AC220V power supply; H Series is suitable for AC 380V power supply. Do not connect it incorrectly.

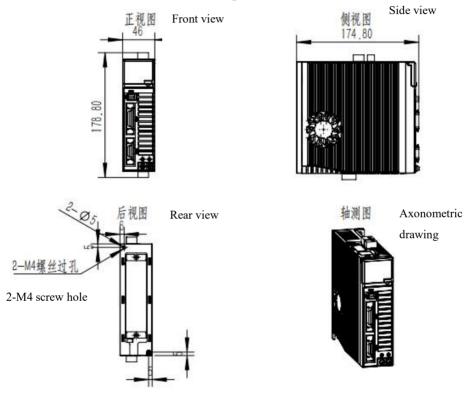
• Products U, V and W should be connected with the motor for output, please do not connect with the input power supply.

■ U, V, W products for three-phase output do not connect wrong sequence, wrong connection may cause motor speed, equipment damage, and the product over-current damage.

■ Fasten all terminals, and all wiring specifications are strictly selected according to power.

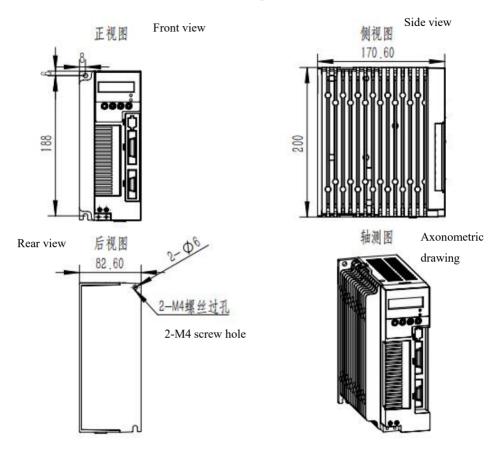
■ It is forbidden to distribute power or touch terminals when the driver is powered on.

■ Do not touch the terminal within 5 minutes of power failure.


It is forbidden to touch the motor and cable when the motor is running to prevent accidental injuries such as scald and sprain.

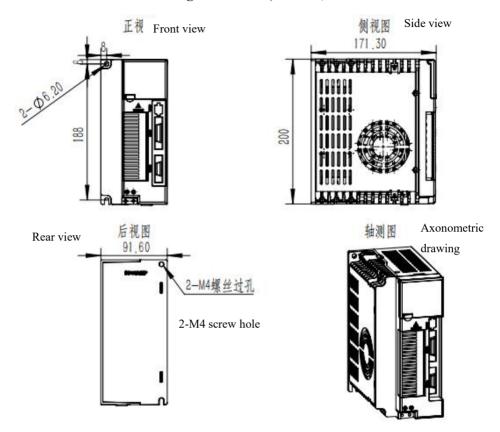
Remarks		

Chapter I Installation


1.1 Servo Driver Mounting Dimensions

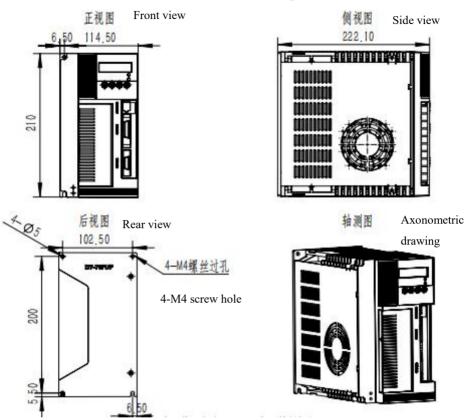
1.1.1 10A/22A/32A servo mounting dimensions (Unit: MM)

Recommended screw: 2-M4; Recommended locking torque: 1.2N.M


Fig.1.1.1 10A/22A/32A appearance dimension diagram

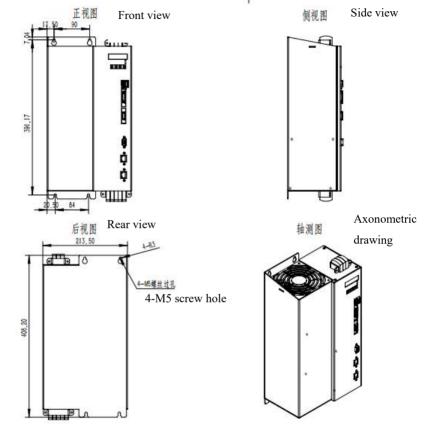
1.1.2 20A/30AServo Driver Mounting Dimensions(Unit: MM)

Recommended screw: 2-M4; Recommended locking torque: 1.2N.M


Fig.1.1.2 20A/30A appearance dimension diagram

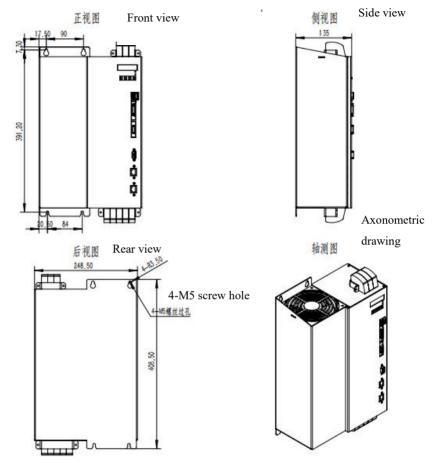
1.1.3 35A servo mounting dimensions (Unit: MM)

Recommended screw: 2-M4; Recommended locking torque: 1.2N.M


Fig.1.1.3 35A appearance dimension diagram

1.1.4 25A/50A/75A Servo Driver Mounting Dimensions(Unit: MM)

Recommended screw: 4-M4; Recommended locking torque: 1.2N.M


Fig.1.1.4 25A/50A/75A appearance dimension diagram

1.1.5 160A Servo Driver Mounting Dimensions(Unit: MM)

Recommended screw: 4-M5; Recommended locking torque: 2N.M

Fig.1.1.5 160A installation dimension diagram

1.1.6 200A Servo Driver Mounting Dimensions(Unit: MM)

Recommended screw: 4-M5; Recommended locking torque: 2N.M

Fig.1.1.6 200A installation dimension diagram

1.2 Installation Situations

- To ensure the normal operation of the driver, it is necessary to ensure that the temperature around the driver is below 50°C and the relative humidity is below 90%. Long-term safe working temperature below 40°C.
- 2. The servo driver is prone to failure when it is used in corrosive gas, humidity, metal dust, water and processing liquid and harsh environment. Therefore, the working environment of the drive should be fully considered in the process of using and installing.
- 3. The vibration of the equipment directly or indirectly connected with the servo driver should be guaranteed below 0.5 G (4.9 m/S2) or less, so as to ensure the long-term stable operation of the servo driver.
- 4. The servo driver may be disturbed while interfering, so when installing the electric cabinet or complete set of equipment, we must pay attention to the wiring of strong electricity and weak electricity, because when the external interference signal is very strong, when the influence on the power line and control signal of the servo driver is serious, it will lead to the driver not working normally, and it may also make the driver misoperate. When the wiring is poor, the control equipment such as the upper computer will work unstably under the interference of driving. Pay attention to installing acoustic-magnetic rings, filters, isolation transformers, etc. at interference sources and interfered places. Special attention should be paid to the control signal lines of drivers which are easily disturbed, and reasonable routing and shielding measures should be taken.

1.3 Installation Direction and Space

- 1. Pay attention to the installation direction (see Fig.1.3).
- 2. Pay attention to the installation spacing (see Fig. 1.3).
- 3. 4 M5 screws can be fixed, and elastic pads need to be installed.
- 4. Servo must be installed in a relatively closed space, keep ventilation in the electric cabinet, install filter screens at the vents to prevent dust from entering, and clean them regularly to prevent blockage of airflow.

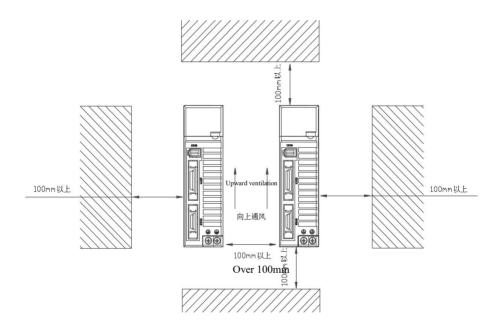



Fig.1.3 Installation orientation map

2.1 Servo C7 Series Basic Functions

Model		С7-13іС
supply	ol power 7 and main 9 ower supply	L: Power supply for single-phase or three-phase AC220V; H: Three-phase 380V supply voltage fluctuation:- $15 \sim +10\%$, 50/60 Hz
Envi ron	Temperatur	Operation: $0 \sim 55$ ° C Storage:-40 ° C ~ 80 ° C
men	Humidity	Not more than 90% (no condensation)
t	Air index	There is no dust in the electric cabinet (conductive medium such as iron dust)
Contro	ol mode	1: Position control 2: Speed control 3: Torque control 4: JOG operation 5: Internal Speed Four Speed 6: Internal Position Control 7: Internal Torque Control 8: Position & Speed Control 9: Speed & Torque Control
External I/O		1: Enable 2: Reset 3: Position deviation cleared 4: Pulse, CCW, CW, Prohibited 5: Position Switch 6: Speed Selection 7: Zero Speed Clamp 8: Second Return Zero 9: Extended functions such as orientation and quasi-stop (option) 10: Positioning completed
Encoder feedback		10000p/r (standard), 17bit/23bit/biss/resolver (optional)
Communication mode		RS485/MECHATROLINK/EtheCAT/CANopen (option)
Load inertia		Less than 5 times of motor inertia
Monit	oring	Rotating speed, current position, command pulse accumulation,
function		position deviation, motor current, running state, input and output terminals, Z pulse signal, etc.
Protection function		Overvoltage, overcurrent, overspeed, overload, abnormal feedback, etc.
Alarm	function	When the servo works abnormally, it is accompanied by alarm output, LED flashing and red light
Gain a	ıdjustment	When the motor is running or stopping, the gain can be adjusted to match the motor performance
Adaptiv	/e motor	See Tables 2.21, 2.22, 2.23, 2.24, 2.25

Table 2.1 List of Functions

2.2 Servo Selection

Model code	Adaptive driver (AC 220V)	Adaptive motor	Power (Kw)	Rated current (A)	Rated torque (Nm)
30	C7-13IC10L	40ST-M00130LMB	0.05	0.4	0.16
31	C7-13IC10L	40ST-M00330LMB	0.1	0.6	0.32
33	C7-13IC10L	60ST-M00630LMB	0.2	1.2	0.6
34	C7-13IC22L	60ST-M01330LMB	0.4	2.8	1.3
35	C7-13IC22L	60ST-M01930LMB	0.6	3.5	1.9
0	C7-13IC22L	80ST-M01330LMB	0.4	2.6	1.3
1	C7-13IC32L	80ST-M02430LMB	0.75	4.2	2.4
1	C7-13IC32L	80ST-M03330LMB	1.0	4.2	3.3
1	C7-13IC32L	80ST-M04030LMB	1.2	4.5	4
0	C7-13IC22L	90ST-M02430LMB	0.75	3	2.4
0	C7-13IC22L	90ST-M03520LMB	0.73	3	3.5
1	C7-13IC32L	90ST-M04025LMB	1	4	4
4	C7-13IC32L	110ST-M02030LMBB LMB	0.6	4	2
5	C7-13IC32L	110ST-M04030LMB	1.2	5	4
5	C7-13IC30L	110ST-M05030LMB	1.5	6	5
5	C7-13IC30L	110ST-M06020LMB	1.2	6	6
6	C7-13IC30L	110ST-M06030LMB	1.8	8	6
9	C7-13IC30L	130ST-M04025LMB	1	4	4
9	C7-13IC30L	130ST-M05025LMB	1.3	5	5
14	C7-13IC30L	130ST-M06025LMB	1.5	6	6
14	C7-13IC30L	130ST-M07720LMB	1.6	6	7.7
11	C7-13IC30L	130ST-M07725LMB	2.0	7.5	7.7
15	C7-13IC50B	130ST-M07730LMB	2.4	9	7.7
14	C7-13IC30L	130ST-M10015LMB	1.5	6	10

Chapter II Functional Overview

Table 2.21

				I II Functiona	
Model code	Adaptive driver (AC 220V)	Adaptive motor	Power (Kw)	Rated current (A)	Rated torque (Nm)
15	C7-13IC50B	130ST-M10025LMB	2.6	10	10
15	C7-13IC50B	130ST-M15015LMB	2.3	9.5	15
15	C7-13IC50B	130ST-M12020LMB	2.4	10	12
14	C7-13IC50L	130ST-M07720LMB	1.6	6	7.7
11	C7-13IC50L	130ST-M07725LMB	2.0	7.5	7.7
15	C7-13IC50L	130ST-M07730LMB	2.4	9	7.7
14	C7-13IC50L	130ST-M10015LMB	1.5	6	10
15	C7-13IC50L	130ST-M10025LMB	2.6	10	10
15	C7-13IC50L	130ST-M15015LMB	2.3	9.5	15
17	C7-13IC50L	130ST-M15025LMB	3.9	17	15
17	C7-13IC50L	150ST-M12030LMB	3.6	16.5	12
17	C7-13IC50L	150ST-M15025LMB	3.8	16.5	15
17	C7-13IC50L	150ST-M18020LMB	3.6	16.5	18
19	C7-13IC50L	150ST-M23020LMB	4.7	20.5	23
19	C7-13IC50L	150ST-M27020LMB	5.5	20.5	27
15	C7-13IC50L	150ST-M12020LMB	2.4	10	12
12	C7-13IC50L	180ST-M17215LMB	2.7	10.5	17
12	C7-13IC50L	180ST-M19015LMB	3	12	19
13	C7-13IC50L	180ST-M21520LMB	4.5	16	21
12	C7-13IC75L	180ST-M27010LMB	2.9	12	27
13	C7-13IC75L	180ST-M27015LMB	4.3	16	27
13	C7-13IC75L	180ST-M35010LMB	3.7	16	35
19	C7-13IC75L	180ST-M35015LMB	5.5	24	35

Table 2.22

Chapter II Functional Overviev

Model code	Adaptive driver (AC 220V)	Adaptive motor	Power (Kw)	Rated current (A)	Rated torque (Nm)
103	С7-13ІС25Н	130ST-M07720HMB	1.6	4	7.7
109	С7-13ІС25Н	130ST-M07725HMB	2.0	5.5	7.7
109	С7-13ІС25Н	130ST-M07730HMB	2.4	6.5	7.7
112	С7-13ІС25Н	130ST-M10015HMB	1.5	4.5	10
113	С7-13ІС25Н	130ST-M10025HMB	2.6	7	10
113	С7-13ІС25Н	130ST-M15015HMB	2.3	7	15
116	C7-13IC50H	130ST-M15025HMB	3.9	11.5	15
116	C7-13IC50H	150ST-M12030HMB	3.6	11.5	12
116	C7-13IC50H	150ST-M15025HMB	3.8	11.5	15
116	С7-13ІС50Н	150ST-M18020HMB	3.6	10.5	18
120	C7-13IC50H	150ST-M23020HMB	4.7	13.5	23
120	С7-13ІС50Н	150ST-M27020HMB	5.5	13.5	27
109	С7-13ІС25Н	180ST-M17215HMB	2.7	6.5	17
113	С7-13ІС25Н	180ST-M19015HMB	3	7.5	19
114	С7-13ІС50Н	180ST-M21520HMB	4.5	9.5	21
113	С7-13ІС50Н	180ST-M27010HMB	2.9	7.5	27
114	С7-13ІС50Н	180ST-M27015HMB	4.3	10	27
114	С7-13ІС50Н	180ST-M35010HMB	3.7	10	35
116	С7-13ІС75Н	180ST-M35015HMB	5.5	12	35
125	С7-13ІС75Н	180ST-M48015HMB	7.5	20	48

Table 2.23

			Chapte	I II Functiona	
Model code	Adaptive driver (AC 220V)	Adaptive motor	Power (Kw)	Rated current (A)	Rated torque (Nm)
102	C7-13IC25H	130ST-M04025HMB	1.0	3	4
102	C7-13IC25H	130ST-M05020HMB	1.0	3	5
102	C7-13IC25H	130ST-M05025HMB	1.3	3.5	5
112	C7-13IC25H	130ST-M06025HMB	1.5	4.5	6
103	C7-13IC25H	130ST-M07720HMB	1.6	4	7.7
109	C7-13IC25H	130ST-M07725HMB	2.0	5.5	7.7
109	C7-13IC25H	130ST-M07730HMB	2.4	6.5	7.7
112	C7-13IC25H	130ST-M10015HMB	1.5	4.5	10
113	C7-13IC35H	130ST-M10025HMB	2.6	7	10
113	C7-13IC35H	130ST-M15015HMB	2.3	7	15
116	C7-13IC35H	130ST-M15025HMB	3.9	11.5	15
116	C7-13IC35H	150ST-M15025HMB	3.8	11.5	15
114	C7-13IC35H	150ST-M18020HMB	3.6	10.5	18
120	C7-13IC50H	150ST-M23020HMB	4.7	13.5	23
120	C7-13IC50H	150ST-M27020HMB	5.5	13.5	27
114	C7-13IC50H	180ST-M18020HMB	3.6	10	18
120	С7-13ІС50Н	180ST-M23020HMB	4.7	13.5	23
120	C7-13IC50H	180ST-M27020HMB	5.5	13.5	27
120	C7-13IC50H	180ST-M36015HMB	5.6	14	36
120	C7-13IC50H	180ST-M23020HMB	4.7	13.5	23
120	C7-13IC50H	180ST-M27020HMB	5.5	13.5	27

Table 2.24

Model code	Adaptive driver (AC 220V)	Adaptive motor	Powe r (Kw)	Rated current (A)	Rated torque (Nm)
120	С7-13ІС75Н	180ST-M36015HMB	5.6	14	36
118	С7-13ІС75Н	180ST-M45015HMB	7.0	16.5	45
125	C7-13IC160H	180ST-M55015HMB	8.6	20.5	55
127	C7-13IC160H	180ST-M70016HMB	12.5	38	70
116	С7-13ІС75Н	200ST-M38015HMB	6	11.6	38
Х	C7-13IC160H	200ST-M42020HMB	8.7	18.8	42
Х	C7-13IC160H	200ST-M55015HMB	20.2	16.6	55
Х	C7-13IC160H	200ST-M58020HMB	12	24.3	58
Х	C7-13IC160H	200ST-M74015HMB	26.5	26.5	74
Х	C7-13IC160H	200ST-M87020HMB	18.2	36.7	87
Х	C7-13IC160H	200ST-M103015HMB	16.4	33.2	103
Х	C7-13IC200H	200ST-M950020HMB	20.4	40.1	95
Х	C7-13IC200H	200ST-M12805HMB	20	41	128
Х	C7-13IC200H	200ST-M135020HMB	28.3	60.5	135
Х	C7-13IC200H	200ST-M186015HMB	29	61	186
Х	С7-13ІС200Н	200ST-M175020HMB	36.7	73.7	175
Х	С7-13ІС200Н	264ST-M215020HMB	49	96	215
Х	C7-13IC200H	264ST-M210015HMB	33	62	210
Х	С7-13ІС200Н	264ST-M220015HMB	37	72.73	220

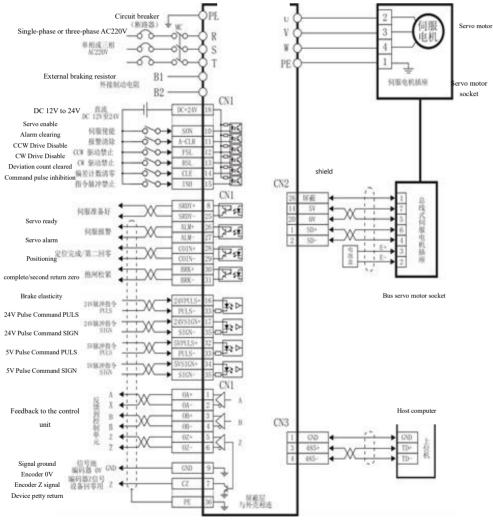
Table 2.25

Chapter III Wiring

3.1 Notes

- Servo drive is a high-voltage and high-current product, and misconnection will cause personal injury and equipment damage.
- ■PE terminal must be grounded, and ensure that the ground wire is reliably grounded.
- L Series of this product is suitable for AC220V power supply; H Series is suitable for AC 380V power supply, do not connect wrong.
- Products U, V and W should be connected with the motor for output, please do not connect with the input power supply.
- U, V, W products for three-phase output do not connect wrong sequence, wrong connection may cause motor speed, equipment damage, and the product overcurrent burn out.
- Fasten all terminals, and all wiring specifications are strictly selected according to power.
- ■It is forbidden to distribute power or touch terminals when the driver is powered on.
- ■Do not touch the terminal within 5 minutes of power failure.
- It is forbidden to touch the motor and cable when the motor is running to prevent accidental injuries such as scald and sprain.

3.2 Wiring Requirements

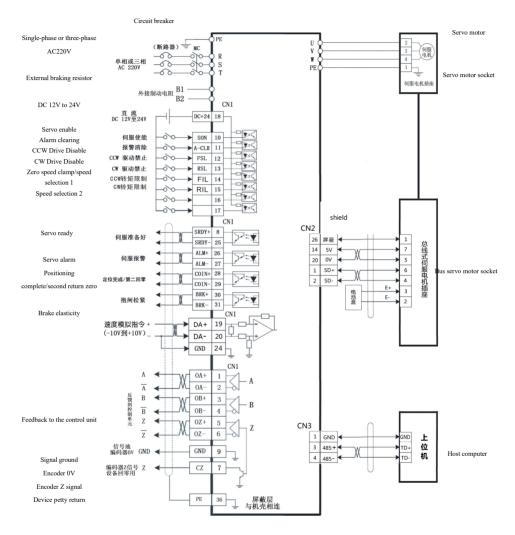

- It is best to use three-phase isolated transformer for power supply.
- The wire diameter of R, S, T, U, V, W and PE should be $\geq 1.5 \text{ mm}^2$.
- All power terminals require cold pressing terminals to ensure firmness and reliability.
- CN1 and CN2 are high-density signal plugs with shielded cables.
- PE terminal connection requires yellow-green wire diameter $\geq 2.5 \text{ mm}^2$.

3.3 Wiring Methods

- ■It is best to use three-phase isolated transformer for power supply.
- The wire diameter of R, S, T, U, V, W and PE should be ≥ 1.5 mm2.
- All power terminals require cold pressing terminals to ensure firmness and reliability.
- CN1 and CN2 are high-density signal plugs, and both ends of the shielding layer are grounded and connected with the shell.
- ■PE terminal wires should be connected to the ground of the connected equipment housing and connected to the ground.

3.4 Typical Wiring

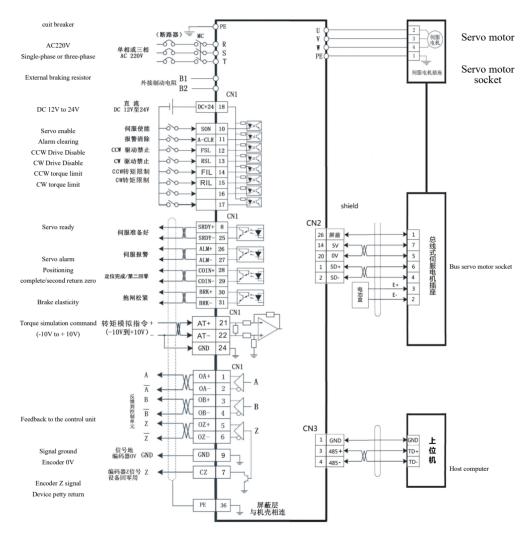
3.4.1 Position control (pulse type)



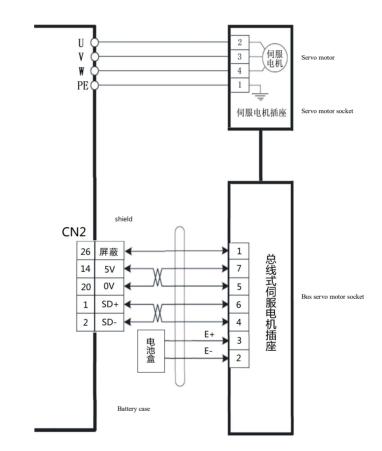
The shielding layer is connected with the

housing

Fig. 3.4. 1 Position control wiring


3.4.2 Speed Control (Analog)

The shielding layer is connected with the housing $\mathbf{E} = \mathbf{2} \mathbf{4} \mathbf{2} \mathbf{C} \mathbf{C} = \mathbf{1} \mathbf{1} \mathbf{C} \mathbf{C} \mathbf{1}$


Fig. 3.4.2 Speed control wiring

3.4.3 Torque Control (Analog)

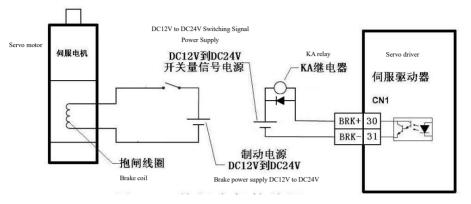

The shielding layer is connected with the housing

Fig. 3.4.3 Torque control wiring

3.4.4 Wiring diagram of bus type motor encoder

Fig. 3.4.4 Wiring diagram of Domochuan multi-turn absolute value encoder

3.5 Servo Motor Brake Wiring Diagram

Fig. 3.5.1 Brake motor wiring diagram

Pin No.	Pin identification	Function description
1	DC+	DC power supply positive DC24V+
2	DC-	DC power supply negative 0V
3	PE	Shell grounding

Fig. 3.5.1 Internal contracting brake sockets for servo motors

- ■It is required that the brake power supply should be separated from the DC power supply of the upper computer and driver to prevent interference.
- The braking power supply of the brake has positive and negative poles, which cannot be connected to prevent short circuit.
- In order to improve the braking effect and response, freewheeling diodes (pay attention to positive and negative poles) can be added at both ends of the braking coil.

4.1 Servo Control Power Supply, Definition of High

Power Terminal

Ident	Signal name	Function
ificat		
ion		
R	Control loop, main	R, S and T can be connected to three-phase or
S	loop power supply	single-phase 220V 50HZ power supply with any
Т	(connected by	two terminals. The control power supply and main
	isolation transformer)	circuit power supply of this machine are designed
		in an integrated way.
		Note: It cannot be connected with motors U, V and
		W
PE	Input power	It is connected with the equipment shell and the
	grounding wire	main power supply of the workshop.
B1	External braking	Usually, it is not required, because the driver has
B2	resistor	built-in resistance, and external braking resistance
		is selected in case of large inertia load.
U	Output to servo	U, V and W on servo terminals must correspond to
V	motor	those on servo motors and cannot be misplaced. If
W		the motor is connected incorrectly, the servo will
		give an alarm, which may lead to damage to the
		servo and motor.
		Note: It cannot be connected to power supply R, S
		and T.
PE	Output motor ground	It is connected with servo motor housing PE.
	wire	

4.2 Cn1 Interface, Control Signal Input/Output

Definition

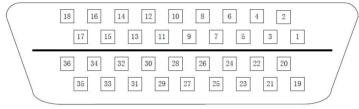


Fig. 4.2 Solder pad facing CN1 36 core plug

Pin	Identification	Signal name	Function
18	+24V	Input power	Common terminal of input terminal (connected to + 12V \sim
		supply is	+ 24V power supply)
		positive	
10	SON	Servo enable	Enable terminal:
			OFF when 0V is disconnected: the drive stops the motor in
			a free state.
			When 0V is turned ON, it is ON: the driving working
			motor is locked.
			After 40MS is enabled, commands can be received.
			This signal cannot be frequently switched on and off for
			motor start and stop.
11	A-CLR	Alarm	Alarm Clear/Mode Switch Terminal:
		Clear/Mode	OFF when 0V is disconnected: normal state or keep alarm
		Switch	state.
			ON when 0V is turned ON: clear the alarm.
			■ Mode switching is effective when PA32=1.
12	FSL	CCW Drive	Do not allow the servo motor to rotate the terminal
		Disable	counterclockwise:
			■ When parameter PA20=0:
			OFF when 0V is disconnected: the servo motor can rotate
			counterclockwise.

	ON when 0V is turned ON: the servo motor is forbidden to
	rotate counterclockwise.
	Equivalent to the effect of limit switch, PA55 can be
	set normally open and normally closed.
	Used in conjunction with parameter PA20, this function is
	blocked when it is 1.

Pin	Identi	Sign	Function
	ficatio	al	
	n	nam	
		e	
13	FSR	CW Driv e Disa	Do not allow the servo motor to rotate the terminal clockwise: When parameter PA20=0: OFF when 0V is disconnected: the servo motor can rotate clockwise.
		ble	 ON when 0V is turned ON: the servo motor is forbidden to rotate clockwise. Equivalent to the effect of limit switch, PA55 can be set normally open and normally closed. Used in conjunction with parameter PA20, this function is blocked when it is 1.
14	CLE	The devi atio n coun ter is clear ed	 Position deviation counter clearing terminal 1: In position control mode, that is, when PA4=0: OFF when 0V is turned OFF: the counter value is maintained. ON when 0V is connected: the position deviation counter is cleared.
	SC1	Inter nal Spee d Sele ctor Ter min al 1	 Internal speed selection terminal: When parameters PA4=1 and PA22=0, it is the internal speed mode Four internal speeds are selected through the combination of SC1 (14 pins) and SC2 (15 pins) and the on-off of 0V: SC1 OFF, SC2 OFF: Internal speed 1; SC1 ON, SC2 OFF: Internal speed 2; SC1 OFF, SC2 ON: Internal Speed 3; SC1 ON, SC2 ON: Internal Speed 4; The four speeds can be changed by PA24, PA25, PA26 and PA27.
	ZERO	Zero spee d clam p	 Speed command analog zero setting terminal: External analog speed mode when parameters PA4=1 and PA22=1: OFF when 0V is turned OFF: the speed command is an analog input value.

		ON when 0V is turned ON: the speed command is set to zero.
		External analog control PA22=2, 0 ~ + 10V control forward
		rotation
		During torque control, limit the motor to rotate the terminal
		clockwise:
		The value of parameter PA38 is valid when 0V is turned on,
		otherwise it is invalid.
		In torque control, parameter PA34 always plays a limiting role.
CCW	$0\sim$	■External analog control PA22=2, 0 ~ + 10V control forward
	+10f	rotation
	orw	
	ard	
	rotat	
	ion	
RIL	CC	During torque control, limit the motor to rotate the terminal
	WC	clockwise:
	CW	The value of parameter PA38 is valid when 0V is turned on,
	torq	otherwise it is invalid.
	ue	In torque control, parameter PA34 always plays a limiting role.
	limit	
	torq ue	otherwise it is invalid.

	Identificat	Signal	
Pin	ion	name	Remarks
15	INH	Command pulse inhibition	 Command Pulse Disable Terminal: Under external position control mode when parameter PA4=0: OFF when 0V is turned OFF: the command pulse input is valid. ON when 0V is turned ON: command pulse input is prohibited. Internal Speed Selector Terminal 2:
	SC2	Internal Speed Selector Terminal 2	Internal Speed Selector Terminal 2: Internal Speed Selector Terminal 2: When parameters PA4=1 and PA22=0, it is the internal speed mode Four internal speeds (set by PA24, ~ PA27) are selected through the combination of SC1 (14 pins) and SC2 (15 pins) and the on-off of 0V:
	FIL	CCW torque limit	In torque control, parameter PA35 always plays a limiting role. External analog control PA22=2, $0 \sim +10V$ control inversion; Example: 8 pins are connected to + 24V, and 25 pins are connected to the upper computer. When the servo is normal, the upper function receives the + 24V level.
	CW	0 ~ +10 inversion	External analog control PA22=2, $0 \sim + 10V$ control inversion;
8	SRDY+	Servo ready to	Example: 8 pins are connected to + 24V, and 25 pins are connected to the upper computer.
25	SRDY –	output	When the servo is normal, the upper function receives the + 24V level. When servo alarms, + 24V is disconnected from the upper computer. Example: 25 pins are connected to 0V, and 8 pins are connected to the upper computer.

When the servo is normal, the upper function
receives 0V level.
When servo alarm, 0V is disconnected from the
upper computer (normally closed).
■ Through the parameter PA57, the level can be
reversed or switched normally open and
normally closed

	Identific		
Pin	ation	Signal name	Remarks
26	ALM+	Servo alarm	Example: 26 pins are connected to + 24V, and 27
27	ALM-	output	pins are connected to the upper computer.
			The upper function receives + 24V level when
			servo alarm occurs.
			When the servo is normal, + 24V is disconnected
			from the upper computer.
			Example: 27 pins are connected to 0V, and 26 pins are connected to the upper computer.
			When the servo is normal, the upper function
			receives 0V level.
			When servo alarm, 0V is disconnected from the
			upper computer (normally closed).
			■ Through the parameter PA57, the level can
			be reversed or switched normally open and
			normally closed
28	COIN+	The second	Example: 28 pins are connected to + 24V, and 29
29	COIN-	zero (used by	pins are connected to the upper computer.
29	COIN	Siemens)	When the positioning is completed or the speed
		Positioning	reaches or zero, the upper function receives it
		completed or	+ 24V level, otherwise + 24V is disconnected from
		speed arrived	the upper computer.
		(PA42 switch)	Example: 29 pins are connected to 0V, and 28 pins
			are connected to the upper computer. When the positioning is completed or the speed
			reaches or zero, the upper function receives it
			0V level, otherwise 0V is disconnected from the
			upper computer.
			■ Through the parameter PA57, the level can
			be reversed or switched normally open and
			normally closed
			 Most of the machine tool industry is Siemens
			801 and 802 CNC petty use
30	BRK+	Elasticity of	Output of lock switch:
31	BRK-	mechanical	Example: 30-pin connection + 24V, 31-pin
		brake (lock	connection relay coil positive.
		brake)	When the motor is enabled, the intermediate relay
			coil can receive + 24V level, otherwise + 24V is

Chapter IV Interfaces

disconnected from the intermediate relay coil.	
Example: Pin 31 is connected to 0V, and Pin 30 is	
connected to negative relay coil.	
When the motor is enabled, the intermediate relay	
coil can receive 0V level, otherwise 0V is	
disconnected from the intermediate relay coil.	
Through the parameter PA57, the level can	
be reversed or switched normally open and	
normally closed	
PA47 Set Brake Delay Pass	
■ PA48 Set Enable Delay Off	

	Identific		
Pin	ation	Signal name	Remarks
32/16	PULS+	Command	External command pulse input terminal:
33	PULS-	pulse PLUS	■ PA36 and PA37 set pulse filter coefficients to
	1025	input	resist interference.
34/17	SIGN+	Command	Pulse Input Form is set by parameter PA14
		pulse PLUS	during position control PA14=0, pulse + direction (default).
35	SIGN-	input	PA14=0, pulse + direction (default). PA14=1, CCW/CW pulse mode.
		_	PA14=2, two-phase command pulse mode.
19	DA+	Analog speed	External analog speed command input terminal.
20	DA-	command	Speed control analog command input terminal. Speed control analog command input range- $10V \sim$
		input	+ 10V
23	GND	Analog input	Analog input ground
		ground	
21	AT+	Analog torque	External analog torque command input terminal.
22	AT—	command	The input range of speed control analog command
	AI	input	is-10V ~ + 10V.
24	GND	Analog input	Analog input ground
		ground	
1	OA+	Encoder	
2	OA-	Phase A	
3	OB+	Encoder	The ABZ signal of encoder is differential, and the
4	OB-	Phase B	output of driver is fed back to the upper computer.
5	OZ+	Encoder	
6	OZ-	Phase Z	
7	CZ	Encoder	For setting zero-finding point, there is only one
		Z-phase open collector	Z-phase signal when the motor rotates once.
		output	
9	GND	Encoder 0V	Encoder Z-phase signal is output by collector open
		Encoder 0 v	circuit, encoder Z-phase signal is output by concetor open
			(conduction state), otherwise output OFF (cut-OFF
			state);
36	PE	Shield layer	Encoder 0V (common ground, or common ground
		ground wire	with 36 pins)

4.3 Cn2 Interface, Encoder Input Signal Definition

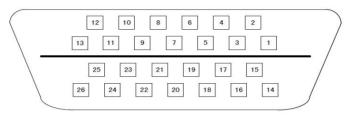


Fig. 4. 3- Solder pad facing CN2 26 core plug

Pin	Identification	Signal name	Remarks
14	+5V	Encoder + 5V power supply	Supply power to encoder with
20	0V	Encoder 0V ground	shielded cable
1	SD+	Encoder positive input	Connected to servo motor encoder SD +
2	SD-	Encoder negative input	Connected to servo motor encoder SD-
26	PE	Shield layer ground wire	It is connected with the metal shell to ensure reliable connection to the earth.

4.4 Cn3 Interface, 485 Interface Definition

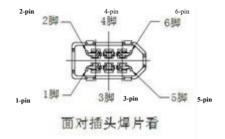


Fig. 4. 4 CN3 interface facing the plug pad

1: Driver CN3 interface definition (modbus standard protocol)

Pin number	1, 2	3	4	5	6
Identification	GND	485+	485-	Empty	Empty

4.5 Principle of Switching Value Input Interface

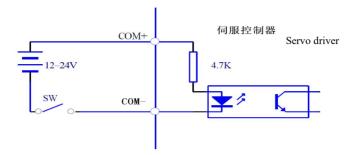


Fig. 4.5 Switch Value Input Interface

- External DC12V-24V power supply is required, and the current is ≥ 105 MA.
- If positive and negative connection will cause drive damage and can not work normally.

4.6 Principle of Switch Output Interface

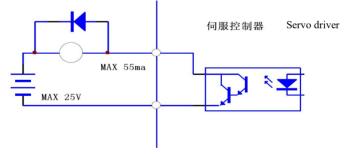


Fig. 4. 6 Switch Value Input Interface

- Maximum output voltage 25V, Maximum current \leq 55MA.
- If positive and negative connection will cause drive damage and abnormal work.
- The output load is an inductive element, and the reverse parallel freewheeling diode is required (the polarity must be connected correctly or the driver will be damaged, which is equivalent to short circuit).

4.7 Principle of Pulse Quantity Input Interface

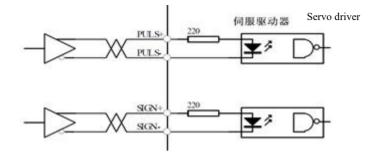


Fig. 4. 7-a pulse differential output mode

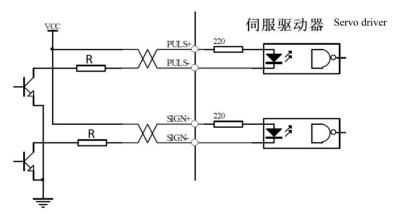


Fig. 4. 7-b pulsed single-ended output mode

- The differential pulse output form should be relatively reliable, and it is recommended to use AM26LS31 and other similar RS422 line drivers.
- The single-ended input mode is supplied with external power, and the working frequency will be reduced. There are the following empirical data:

Input voltage Vcc	Series resistance R
24V	1.4K~2K
12V	500 Ω ~820 Ω
5V	$80 \Omega \sim 120 \Omega$

Pulse form **CCW** operation **CW** operation Parameter selection ากกกุโกกก Pulse plus PA14=0direction Parameter CCW pulse ากกก PA14=1 CW pulse <u>IIIII</u> Parameter biphasic AB PA14=2 orthogonal pulse

4.8 Pulse Input Form

Fig. 4. 8 Pulse form

4.9 Principle of Analog Input Interface

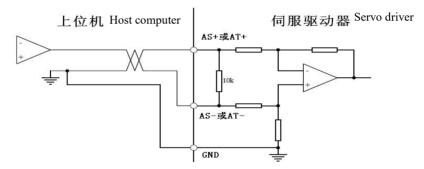


Fig. 4.9-a Analog differential input interface

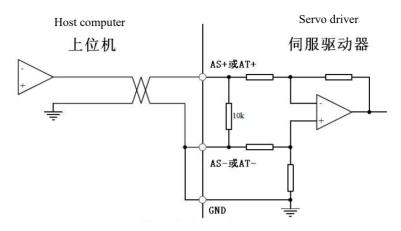


Fig. 4. 9-b Analog single-ended input interface

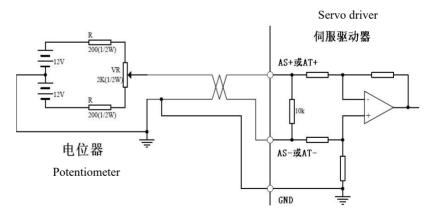


Fig. 4.9-c Analog Differential Potentiometer Input Interface

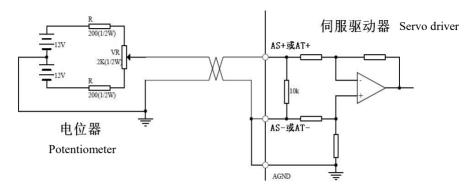


Fig. 4. 9-d Analog single-ended potentiometer input interface

- The analog input voltage cannot exceed the range of $-10V \sim +10V$, otherwise the driver will be damaged.
- Analog quantities are biased because of attenuation and interference in wires and interface circuits. It is recommended to connect with shielded cable and ground at both ends. Threshold voltage can be set for parameter PA49 (unit: rpm).
- The deviation of analog quantity exists and must be adjusted. Parameter PA45 can compensate the deviation.

4.10 Feedback Interface Principle

4.10.1 Encoder Signal Output CN1 Interface (Differential Signal Driver to Host Computer)

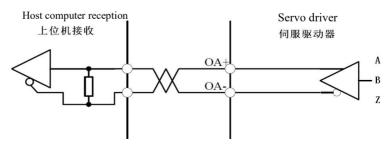


Fig. 4.10.1 CN1 Encoder Output Interface

Chapter IV Interfaces

- The encoder signal is output by differential driver AM26LS31 without isolation.
- The upper computer can adopt AM26LS32 receiving or high-speed photoelectric coupling receiving.

4.10.2 Encoder Z signal output CN1 interface (pins 7 and 9 output to the upper computer for change)

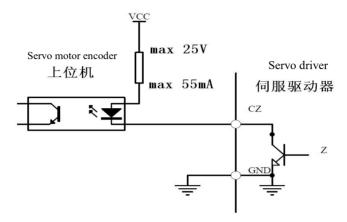


Fig. 4.10.2 CN1 Photoelectric Encoder Z Signal Output Interface

- This Z signal is an open collector output non-isolated, and the encoder Z signal is on or off.
- ■A high-speed optocoupler is required to receive this signal.

4.11 Second encoder interface definition

Pin	Identification	Signal name	Remarks
1	РЕ		
2	+5V	5V output	
3	NC		Hang in the air
4	GND	0V output	
5	S_ENCA+	Second encoder a + input	
6	S_ENCA-	Second encoder A-input	
7	S_ENCB+	Second encoder B + input	
8	S_ENCB-	Second encoder B-input	
9	S_ENCZ+	Second encoder Z + input	
10	S_ENCZ-	Second encoder Z-input	

Chapter V Display and Operation

5.1 Panel Operations

The panel consists of six LED digital tube displays and four buttons "[1], U, , , Enter", a red light "Alm" and a green light "Run", which are used to display various system states and set parameters.

Figure 5.1 Operation Panel

Operations are hierarchical operations, as follows:

- ←key indicates the retreat, exit and cancellation of the level;
- Enter" key indicates that the hierarchy advances, enters, and determines;
- tkeys indicate increasing or decreasing serial numbers or numerical values.
- Alm red indicator lights up, indicating alarm, digital tube and alarm display.
- Run green indicator lights up to indicate that the motor is enabled.
- When the decimal in the lower right corner of the digital tube is lit, it indicates that the current parameter value is in a modified state
- ■If the Alm red light is on and the alarm number "Err--xx" flashes, in order to drive the alarm, it is necessary to cut off the power in time and find out the alarm reason.

5.2 Parameter Structure Composition

The first layer selects the operation mode, and there are 9 modes. Press the key to return to the main menu, use the and keys to select the mode, press Enter to Enter the second layer of the selected mode, and press the key to return to the first layer.

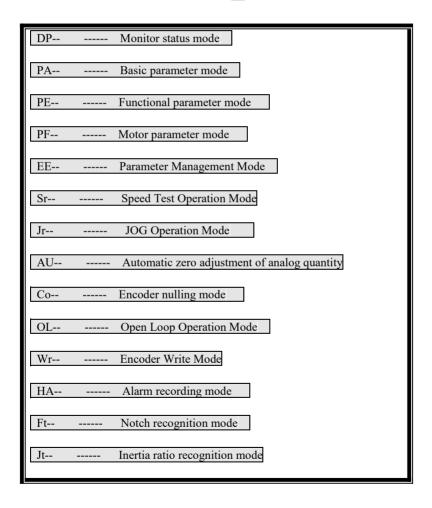
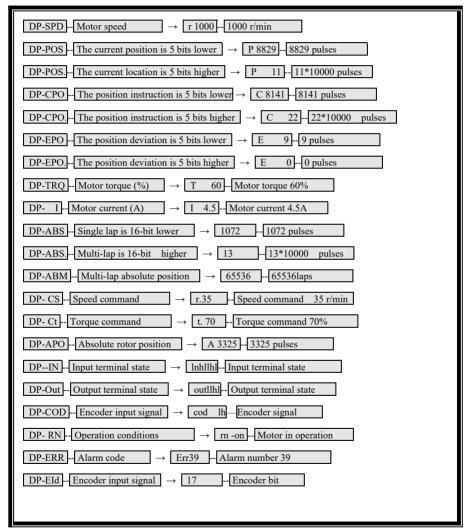
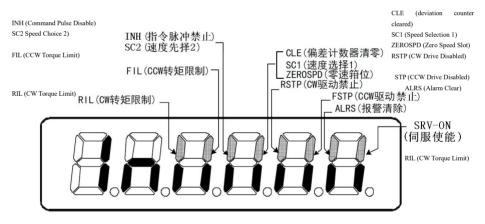


Table 5.2 Mode Operation Diagram

5.3 Parameter Monitoring Mode (DP--)

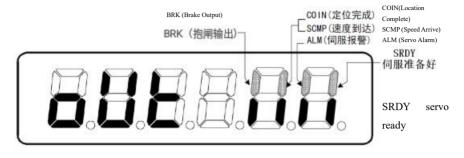



Table 5.3 Watch list diagram

Chapter V Display and Operation

The input pulse quantity is the pulse amplified by the input electronic gear;

■Pulse quantity unit is servo internal pulse unit, 131072 pulses/revolution;


- The absolute position of the motor at one turn is represented by single-turn low-position DP-ABS and high-position DP-ABS. Decimal;
- The multi-turn signal of the motor is represented by DP-ABM decimal, which needs to ensure the normal power supply of the battery and automatically clear when there is no battery.

5.3.1 The status of the input terminal is displayed as shown in the following figure:

Figure 5.3. 1 Input terminal status display

(The signal input of stroke is ON when it is lit, and OFF when it is extinguished)

5.3.2 Output terminal status display, as shown in the following figure:

Figure 5.3. 2 Output terminal status display

(The signal input of stroke is ON when it is lit, and OFF when it is extinguished)

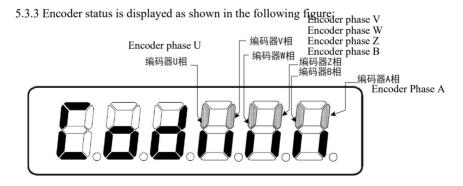


Figure 5.3. 3 Encoder feedback signal status display (The signal input of stroke is ON when it is lit, and OFF when it is extinguished)

5.4 Parameter Modification Mode (PA--)

Press the "Enter" key to Enter the "PA-" Parameter Modification Mode, press the and keys to add and subtract Parameter No., press the "Enter" key to Enter the modified parameter value, when the parameter is modified, the decimal point in the lower right corner of the digital tube will light up, then press the "Enter" key to confirm that the decimal point will go out, and press the key to return.

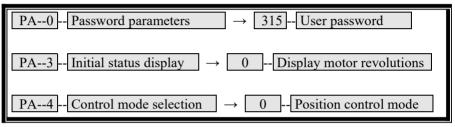


Table 5.4 Modifying Parameter Mode Operations

5.5 Parameter Management Mode (EE- -)

Press the "Enter" key to enter the "EE-" Parameter Management Mode, press the f and keys to add and subtract parameter items, find the menu that should be saved or restored, press the "Enter" key for more than 3 seconds, and the "Finish" operation will be successful, which will take effect after power failure. If it fails or the password is incorrect, "Error-" will appear.

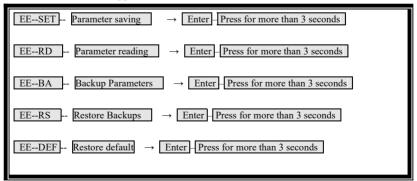


Table 5.5 Parameter Management Mode Operations

5.5.1 EE-SET parameter is written, and the password of parameter PA-0 should be 315, which is mainly for permanent preservation of parameters. When the preservation is completed, it will not be affected by power failure. The modified parameters can be used after power-on again.

5.5.2 EE-BD parameter backup is to write the parameters with good effect in the existing servo state into the backup area of EEPROM and restore the backup.

5.5.3 EE-RS recovery backup is to restore the backup parameters of the backup area from EEPROM to the parameter table.

5.5.4 EE-DEF restores the default value. In the process of driver debugging, or when the parameters are confused and can't remember the modified parameters, the operation of restoring the default value (i.e., the factory value) can be carried out.

■ This recovery will not affect the motor parameters, and the servo motor parameters are read from the encoder;

Steps	Panel display	Key	Operation
1	8.8 .8.8.8.	↑↓←Enter	Press the key twice to select the function. If the parameter number does not display EE, press \downarrow \circ
2	8.8.8.8.8	†↓←Enter	Press Enter and then press the↑↓key to display "EE-DEF".
3	88888	†↓←Enter	Press the Enter key for 3 seconds and then "FINISH" will be displayed.

Restore the default setting method

Parameter saving setting method

Steps	Panel display	Key	Operation
1	88 8888	↑↓←Enter	Press the key twice to select the function. If the parameter number does not display EE, press the \square .
2		↑↓←Enter	Press Enter and then press the \bigwedge key to display "EE-SET".
3	88888	↑↓←Enter	Press the Enter key for 3 seconds and then "FINISH" will be displayed.

5.6 JOG INCHING OPERATION MODE (Jr--)

Steps	Panel display	Key	Operation
1	888888	↑↓←Enter	Press the ←key twice to select the function. If the parameter number does not show "PA", press the ↓.
2	88888	†↓ ← Enter	Press Enter and then press the ↑↓ key to display "PA-4".
3	88888 8	↑↓←Enter	Press Enter to set the value "0" to "3" by pressing the 1 key, and press Enter to confirm.
4	88888	↑↓ ←Enter	Press the \leftarrow key to select the function.
5	888888	†↓←Enter	Press the ↑↓ key to display "PA-53".
6	886888	↑↓ ←Enter	Press Enter to set the value "0" to "1", and press Enter to confirm.
10	8.8.8.8.8.8	↑↓←Enter	Press the \leftarrow key twice to select the function, press the \uparrow key to select "Jr" and press Enter to confirm.
11	<i></i>	↑↓ ←Enter	Press the 🔃 key to reverse the motor forward and backward.

5.6 JOG INCHING OPERATION MODE OPERATION

5.7 Speed Test Operation Mode (Sr--)

Steps	Panel display	Key	Operation
1	888888	↑↓←Enter	Press the key twice to select the function. If the parameter number does not show "PA", press the 1 .
2	88888	†↓ ← Enter	Press Enter and then press the ↑↓ key to display "PA-4".
3	88888 8	↑↓←Enter	Press Enter to set the value "0" to "3" by pressing the $\uparrow \downarrow$ key, and press Enter to confirm.
4	888888	↑↓←Enter	Press the \leftarrow key to select the function.
5	88888	↑↓←Enter	Press the ∰ key to display "PA-53".
6	888888	↑↓ ←Enter	Press Enter to set the value "0" to "1", and press Enter to confirm.
7	888888	↑↓←Enter	Press the \leftarrow key twice to select the function, press the $\uparrow \downarrow$ key to select "Jr" and press Enter to confirm.
8	8.8.8.8.8. 8 .	↑↓←Enter	Press the two reverse the motor forward and backward.

5.7 Speed Test Operation Mode Operation

Chapter V Display and Operation 5.8 Analog Auto Zero Mode (AU--)

5.8.1 Zero adjustment of speed analog quantity

Press the "Enter" key to Enter the "AU-spd" analog zero mode, and then press the "Enter" key for more than 3 seconds to Enter the "Start" speed analog zero state. After completion, "Finish" will be displayed and the zero drift value will be automatically saved to PA45 (or PA39). After that, you can also manually modify the PA45 (or PA39) zero drift value and save it manually.

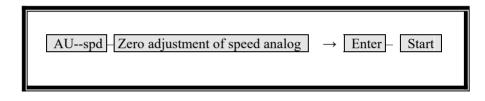


Table 5.8.1 Speed Analog Zero Mode Operation

■ Parameter PA49 can set the threshold voltage (unit: rpm).

5.8.2 Torque analog zero adjustment

Press the "Enter" key to Enter the "AU-trq" analog zero mode, and then press the "Enter" key for more than 3 seconds to Enter the "Start" speed analog zero state. After completion, "Finish" will be displayed and the zero drift value will be automatically saved to PA45 (or PA39). After that, you can also manually modify the PA45 (or PA39) zero drift value and save it manually.

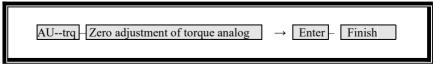
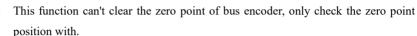
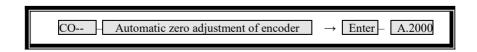



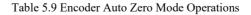
Table 5.8.2 Torque Analog Zero Mode Operation

5.9 Encoder Auto Zero Mode (CO--)

5.9.1 The encoder automatically checks the zero bit

Parameter PA0=510: It is only used to check the zero adjustment accuracy of the motor. Press the "Enter" key to Enter the zero adjustment mode of the "CO-" encoder, and then press the "Enter" key for 3 seconds, showing "A.2000" as the locking process. The servo motor is locked, and the zero deviation of the motor is displayed after completion;


5.9.2 Encoder automatically checks zero position (this function is only used by motor factory)


Parameter PA0=620: Set the bus encoder position to zero, press the "Enter" key to Enter the "CO-" encoder zeroing mode, and then press the "Enter" key for 3 seconds. When "A.2000" is displayed, it is indicated as locking process. After the servo motor is locked, the zero deviation of the motor is displayed and set to zero immediately;

• Each motor more than a few cycles of operation can improve the motor zero-setting accuracy, the function of zero and zero.

5.9.3 Settings related to zero adjustment mode PPA4=4 Zero Mode, PA53=0001 Internal Enable.

5.10 Open Loop Operation Mode (OL--)

5.10.1 Open-loop operation

Press the " Enter" key to Enter the "OL-" Open Loop Operation Mode, and then press the "Enter" key for more than 3 seconds, and the Open Loop Operation Mode starts and the motor rotates. This function should not run for a long time

OL--**Open Loop Operation** \rightarrow Enter -Finish

Figure 5.10 Open Loop Operation Mode Operation

5.11 Encoder Write Mode (WR--)

5.11.1 The motor code is written into the encoder (refer to the code table in Chapter 2)

Parameter PA0=620, PA1 set the corresponding code of the motor (corresponding current value is enough)

Press "Enter" key to Enter "WR-" Encoder Write Mode, and then press "Enter" key for more than 3 seconds, and the "Finish" operation will succeed, which will take effect after power failure. If it fails or the password is incorrect, "Error-" will appear.

WR--Encoder Write Mode \rightarrow

Enter -

Finish

Table 5.11 Encoder Write Mode Operation

Chapter VI Parameters

6.1 Parameter List [PA Mode]

Paramete	Parameter name	Unit	Parameter	Default
r No.			range	value
0	Parameter password	*	0~9999	510
1	Motor model of incremental encoder	*	*	*
2	Software version number	*	*	*
3	Initial state display	*	0~19	0
4	Selection of control mode	*	0~6	0
5	Velocity proportional gain	Hz	10~3000	150
6	Velocity integral time constant	mS	1~3000	100
7	Torque filter	%	20~3000	40
8	Velocity detection filter	%	20~3000	40
9	Position proportional gain	1/S	1~500	80
10	Position feedforward gain	%	0~100	0
11	Cut-off frequency of position feedforward filter	Hz	1~1200	300
12	Position command pulse divider	*	1~32767	1
13	Position command pulse frequency division denominator	*	1~32767	1
14	Position command pulse input mode	*	0~2	0
15	Position command pulse direction reversal	*	0~1	0
16	Location completion range	Pulse	0~30000	20
17	Position out-of-tolerance detection range	×100 Pulse	0~30000	400
18	Invalid position out-of-tolerance error	*	0~2	0
19	Position instruction smoothing filter	0.1m S	0~3000	0
20	Invalid driver inhibit input	*	0~2	1
21	JOG Running Speed	r/min	-3000~3000	120
22	Internal and external speed command selection	*	0~2	1

Paramete	Parameter name	Unit	Parameter	Default
r No.			range	value
23	Maximum speed limit	r/min	0~6000	3600
24	Internal Velocity 1	r/min	-3000~3000	0
25	Internal Speed 2 (Motor Zero Current)	r/min	-3000~3000	100
26	Internal Velocity 3	r/min	-3000~3000	300
27	Internal Velocity 4	r/min	-3000~3000	-100
28	Arrival speed	r/min	0~3000	500
29	Analog torque command input gain	0.1V	10~100	50
		/100		
		%		
30	User torque overload alarm value	%	50~300	200
31	User torque overload alarm detection	mS	10~30000	0
	time			
32	Control mode switching allowed	*	0~1	0
33	Analog torque input direction is	*	0~1	0
	reversed			
34	Internal CCW torque limit	%	0~300	300
35	Internal CW torque limit	%	-300~0	-300
36	Filter coefficient of command pulse		0~3	1
	signal	*		
37	Filter coefficient of command direction		0~3	0
	signal	*		
38	External CCW, CW torque limit	%	0~300	100
39	Analog torque command zero drift	*	-2000~2000	0
	compensation			
40	Acceleration time constant	mS	1~10000	100
41	Deceleration time constant	mS	1~10000	100
42	Multi-function terminal switching	Binar	0000~1111	0001
		У		
		syste		
		m		
43	Analog speed command gain	(r/mi	10~3000	300
		n) /		
		V		
44	Analog speed command direction	*	0~1	0
	reversal			
45	Analog speed command zero drift	*	-5000~5000	0
	compensation			

Chapter VI Parameters

Chapter VI Parameters

46	Analog speed command filter	Hz	0~1000	300
47	Brake delay conduction setting when	×10	0~500	80
	motor is enabled	mS		

Paramete	Parameter name	Unit	Parameter	Defaul
r No.			range	t value
48	Enable delayed off setting when the motor is closed	×10mS	0~500	0
49	When analog voltage sill value speed control	r/min	0~3000	0
50	Speed limit in torque control	r/min	0~5000	3600
51	Dynamic electronic gear is effective	*	0~1	0
52	Second position command pulse divider	*	1~32767	1
53	Forced ON input at low 4-bit input terminal	Binary system	0000~1111	0000
54	Forced ON input at the upper 4-bit input terminal	Binary system	0000~1111	0000
55	Inverse setting of low 4-bit input terminal	Binary system	0000~1111	0000
56	Inverse setting of high 4-bit input terminal	Binary system	0000~1111	0000
57	Output terminal reverses the control word	Binary system	0000~1111	0010
58	Demonstrate the time setting of mode 2	0.1S	1~30000	600
59	Demonstration mode selection	*	0~2	0
60	Proportional gain of current loop	*	*	800
61	Integration time constant of current loop	*	*	5
62	Retain (modification is not allowed)	*	*	*
63	Motor encoder zeroing offset value	Pulse	-32768~32768	16384
64	Retain (modification is not allowed)	*	*	*
65	Incremental encoder line number	Pulse	0~131072	2500
66	Encoder type selection	*	0~2	2
67	Motor Rated current	0.1A	0~130	100
68	Velocity proportional gain coefficient	*	0~500	100
69	Demonstration Mode 2 Maximum Speed Limit	r/min	0~6000	3000
70	Driver feedback pulse output setting	Pulse	0~30000	10000
71	Output direction selection of feedback pulse	*	0~1	1

Paramet	Parameter name	Unit	Parameter	Defaul
er No.			range	t value
72	Feedback pulse output electronic gear	*	1~32767	1
	molecule			
73	Feedback pulse output electronic gear	*	1~32767	1
	denominator			
74	Switching of frequency doubling	*	0~1	0
	coefficient of servo receiving pulse			
75	The second feedback pulse is low	Pulse	*	0
76	High position of second feedback pulse	Pulse	*	1
77	The direction of the second feedback	*	0~1	0
	pulse is reversed			
78	Retain (modification is not allowed)	*	*	*
79	Retain (modification is not allowed)	*	*	*
80	485 Communication Axis Address	*	0~5000	1
	Setting			
81	Selection of 485 communication baud	*	0~3	2
	rate			
82	485 communication parity check	*	0~1	0
	selection	*	*	*
83	Retain (modification is not allowed)			-
84	Shielded battery alarm	*	0~1	0
85	Allow alarm number 3	*	0~1	0
86	Retain (modification is not allowed)	*	*	*
87	Retain (modification is not allowed)	*	*	*
88	Parameter saving	*	0~1	0
89	Retain (modification is not allowed)	*	*	*
90	Encoder single turn low 16-bit memory	Decimal	0~65536	0
91	Encoder single turn high 16-bit memory	Decimal	0~1	0
92	Encoder multi-turn low 16-bit memory	Decimal	0~65536	0
93	Scaling factor of speed proportional gain	Percenta	20~300	100
	coefficient	ge		
94	Current loop proportional gain scaling	Percenta	20~300	100
	multiple	ge		
95	Rotation monitoring	r/min	0~5000	*

Paramet er No.	Parameter name	Unit	Parameter range	Defau lt value
96	Current monitoring	0.1A	0~130	*
97	Alarm code monitoring	*	1~32767	*
98	Current loop integration time constant scaling multiple	Percentag e	20~300	100
99	Reset Alarm No.40 (Battery Loss)	*	0~1	0

6.2 [Table of PE Functional Parameters]

Paramete	Parameter name	Unit	Parameter	Defaul
r No.			range	t value
0	Reservation	*	*	*
1	Reservation	*	*	*
2	Reservation	*	*	*
3	Reservation	*	*	*
4	Reservation	*	*	*
5	Reservation	*	*	*
6	Reservation	*	*	*
7	Reservation	*	*	*
8	Reservation	*	*	*
9	Reservation	*	*	*
10	Notch filter function switch	Binary system	0000~0101	0000
11	Automatic adjustment switch of notch filter	Binary system	0000~0101	0101
12	Frequency of notch filter in the first segment	Hz	50~4000	0
13	Quality factor of notch filter in the first segment	0.01	50~500	80
14	Depth of notch filter in section 1	0.001	0~1000	0
15	Frequency of notch filter in the second segment	Hz	50~4000	0
16	Quality factor of notch filter in the second segment	0.01	50~500	80
17	Section 2 Notch Filter Depth	0.001	0~1000	0
18	Velocity deviation threshold of automatic notch filter	rpm	0~2000	50
19	Reservation	*	*	*
20	Reservation	*	*	*
21	Reservation	*	*	*

Chapter VI Parameters

22	Reservation	*	*	*
23	Reservation	*	*	*
24	Reservation	*	*	*

Parameter	Parameter name	Unit	Parameter	Defaul
No.			range	t value
25	Reservation	*	*	*
26	Reservation	*	*	*
27	Reservation	*	*	*
28	Reservation	*	*	*
29	Reservation	*	*	*
30	Reservation	*	*	*
31	Reservation	*	*	*
32	Reservation	*	*	*
33	Reservation	*	*	*
34	Reservation	*	*	*
35	The first stage vibration suppression filter vibration suppression frequency	Hz	10~1000	150
36	The first stage vibration suppression filter vibration suppression gain	%	1~1000	100
37	Damping coefficient of vibration suppression filter in the first stage	%	0~300	0
38	Time compensation value of the first stage vibration suppression filter 1	0.01ms	0~1000	0
39	Time compensation value of vibration suppression filter in the first stage 2	0.01ms	0~1000	0
40	Double-loopmeasuringfeed/frictioncompensationfunction switch	*	0000~1111	1000
41	Friction compensation gain	%	10~1000	100
42	Reservation	*	*	*
43	Friction compensation coefficient	%	0~100	0

44	Friction compensation frequency compensation value	0.1Hz	-10000~10000	0
45	Friction compensation gain compensation value	%	1~1000	100
46	Double-loop feeder gain measurement	Hz	1~500	40
47	Gain compensation value of double-loop measurement feed	%	0~1500	150
48	Reservation	*	*	*

Parameter	Parameter name	Unit	Parameter	Defaul
No.			range	t value
49	Reservation	*	*	*
50	Running number of motor in	0.1 round	1~300	30
50	inertia identification			
51	Motor running speed in inertia	r/min	1~300	1000
51	identification			
52	Motor Running Acceleration	r/min/1ms	1~300	10
52	in Inertia Identification			
53	Inertia identification running	0.01S	0~1000	0
	pause time			
54	Initial moment of inertia ratio	%	0~1000	200
	in inertia identification			
55	Proportional gain of velocity	rad/s	10~3000	150
	loop in inertia identification			
	Integral time constant of			
56	velocity loop in inertia	0.1ms	2~5000	200
	identification			
57	Position feedforward gain in	%	0~100	100
	inertia identification			
58	Velocity deviation threshold in	rpm	0~3000	500
	inertia identification			
59	Proportional gain of position	1/s	1~1000	40
	loop in inertia identification			

6.3 [PF Motor Parameter Table]

Parameter	Parameter name	Unit	Parameter	Defaul
No.			range	t value
0	Motor voltage grade	0-220V	0~3	*
U		1-380V	0~3	
1	Rated power of motor	0.01Kw	0~32767	*
2	Rated current of motor	0.01A	0~32767	*
3	Rated torque of motor	0.01Nm	0~32767	*
4	Maximum torque of motor	0.01Nm	0~32767	*
5	Rated speed of motor	1rpm	0~32767	*
6	Maximum speed of motor	1rpm	0~32767	*
7	Motor moment of inertia	10-6Kgm2	0~32767	*
8	Magnetic pole logarithm of	*	0~32767	*
0	motor			
9	Phase resistance of motor	0.001Ω	0~32767	*
10	D-axis inductance of motor	0.01mH	0~32767	*
11	Q-axis inductance of motor	0.01mH	0~32767	*
12	Back EMF constant of motor	0.01V/Krpm	0~32767	*
13	Motor torque constant	0.001Nm/A	0~32767	*
14	Electrical time constant of	0.01ms	0~32767	*
17	motor	0.011115		
15	Mechanical time constant of	0.01ms	0~32767	*
15	motor	0.01113		
16	Motor zero offset is 16 bits	*	0~32767	*
10	lower			
17	Motor zero offset is 16 bits	*	0~32767	*
• /	higher			
18	Type of motor encoder	*	0~32767	*
19	Motor encoder line number is	*	0~32767	*

	16 bits lower			
20	Motor encoder line number is	*	0~32767	*
20	low and high			
21	Motor encoder data writing	*	0.2	*
21	control word		0~3	

Parameter	Parameter name	Unit	Parameter	Defaul
No.			range	t value
22	Reservation	*	*	*
23	Reservation	*	*	*
24	Reservation	*	*	*
25	Reservation	*	*	*
26	Reservation	*	*	*
27	Reservation	*	*	*
28	Reservation	*	*	*
29	Reservation	*	*	*
	Molecular adjustment factor	*	0~32767	1
30	of position command			
	electronic gear			
	Position command electronic	*	0~32767	1
31	gear denominator adjustment			
	factor			
	Molecular adjustment factor	*	0~32767	1
32	of position feedback			
	electronic gear			
	Position feedback electronic	*	0~32767	1
33	gear denominator adjustment			
	factor			
34	Velocity feedback filtering	*	0~16	0
54	factor			
35	Reservation	*	*	*
36	Reservation	*	*	*
37	Reservation	*	*	*
38	Reservation	*	*	*
39	Reservation	*	*	*

40	Reservation		*	*	*
41	Full closed-loop	control	*	0~1	0
41	parameters				

Parameter	Parameter name	Unit	Parameter	Defaul
No.			range	t value
42	Full closed loop feedback type	*	0~3	0
43	Transmission bits of full closed-loop absolute value protocol	*	*	29
44	Mixed deviation detection range	%	1~1000	20
45	Mixed deviation detection time	ms	1~1000	100
46	Mechanical transmission electronic gear molecule	*	1~32767	1
47	Mechanical transmission electronic gear denominator	*	1~32767	1
48	Reservation	*	*	*
49	Function switch	*	0~15	0
50	Transmission bits of absolute value protocol of motor encoder	*	0~32	26
51	Reservation	*	*	*
52	Reservation	*	*	*
53	Reservation	*	*	*
54	Reservation	*	*	*
55	Reservation	*	*	*
56	Reservation	*	*	*
57	Reservation	*	*	*
58	Reservation	*	*	*
59	Reservation	*	*	*

6.4 [Explanation of PA Functional Parameters]

Para	Param	Detailed explanation of function	Paramete
mete	eter		r range
r No.	name		[Default
			value]
0	Param	a. The user password is 315;	0~9999
	eter passw	b. Motor manufacturer code 510 (use with caution);c. Driver manufacturer password 620 (use carefully);	[510]
	ord		
1	Model	a. Use this function when incrementing the encoder;	0~9999
	code	b. This function is shielded in the bus encoder;	[0]
2	Softwa	a. Only display software version number, read-only	0~9999
	re	parameters;	[*]
	versio	b. This parameter is the integrated number of software and hardware:	
	n	and hardware,	
3	Initial	The initial display state of the digital tube when the driver	0~19
	state	is powered on.	[0]
	display	0: Display motor speed; 1: Display 5 digits lower than the current position;	
		2: Display 5 digits higher than the current position;	
		3. Display position instruction (instruction pulse	
		accumulation) is 5 bits lower;	
		4. Display position command (command pulse accumulation) 5 bits higher;	
		5: The display position deviation is 5 bits lower;	
		6: The display position deviation is 5 bits higher;	
		7: Display motor torque; 8: Display motor current;	
		9: The absolute position of a single lap is low;	
		10: The absolute position of a single lap is high;	
		11: Low absolute position for multiple laps; 12: Display speed command; 13: Display torque	
		command;	
		14: Display the absolute position of the rotor during one	
		revolution;	
		15: Display the status of the input terminal;	
		16: Display the state of the output terminal; 17: Display	
		the input signal of the encoder; 18: Display the running status; 19: Display the alarm	
		code;	

Para	Param	Detailed explanation of function	Parameter
mete	eter		range
r No.	name		[Default
			value]
4	Selecti	0: Position control mode; 1. Speed control mode;	0~6
	on of	A. The internal and external velocities are selected by	[0]
	control	parameter PA22; B. The internal speed is selected by the CN1 interface;	
	mode	Four internal speeds were selected by the crvf internace,	
		SC1 and 15-foot SC2:	
		SC1 OFF, SC2 OFF: Internal speed 1; Speed setting PA24	
		SC1 ON, SC2 OFF: Internal speed 2; Speed setting PA25 SC1 OFF, SC2 ON: Internal Speed 3; Speed setting PA26	
		SC1 ON, SC2 ON: Internal Speed 4; Speed setting PA20	
		2. Test operation control mode;	
		3: JOG control mode;	
		The speed is set by parameter PA21.	
		4. Encoder zero adjustment mode; Used for motor factory adjustment coding disk zero point.	
		5. Open-loop operation mode; Used for detecting motors	
		and encoders	
		6. Torque control mode;	
5	Velocit	a. Enhance the proportional gain of the rigid setting speed	
	У	loop regulator;	10~3000
	propor	b. The greater the setting value, the higher the gain and the	[150]
	tional	greater the stiffness. Parameter values are determined	
	gain	according to the specific servo drive system model and	
		load conditions. In general, the greater the load inertia, the	
		greater the set value;	
		c. Set a larger value as far as possible under the condition	
	X71	that the system does not generate oscillation;	1 2000
6	Velocit	a. Setting the integral time constant of the speed loop	1~3000
	y interne	regulator;	[100]
	integra	b. The motor overshoot can be restrained. The smaller the	
	1 time	setting value, the faster the integration speed is, and the	
	consta	overshoot is easy to occur. If the setting value is too small,	
	nt	the response will slow down;	
		c. According to the specific driving model and load inertia	
		setting, the larger the load inertia, the larger the set	
L		value;	

Para mete r No.	Para meter name	Detailed explanation of function	Parameter range [Default value]
7	Torqu e filter	 a.Noise-free setting of torque command filter characteristics; b. for suppressing resonance caused by torque; c. The larger the value, the greater the cut-off frequency, and the smaller the vibration and noise generated by the motor. If the load inertia is very large, the set value can be appropriately increased. If the value is too large, the response will slow down and may cause oscillation; d. The smaller the value, the smaller the cut-off frequency and the faster the response. If higher torque response is needed, the set value can be appropriately reduced; 	20~3000 [40]
8	Veloci ty detecti on filter	a. De-noise setting speed detection filter characteristics; b. The greater the value, the greater the cut-off frequency, and the smaller the noise generated by the motor. If the load inertia is very large, the set value can be appropriately increased. If the value is too large, the response will change, which may cause oscillation. The smaller the value, the higher the cut-off frequency and the faster the speed feedback response. If higher speed response is needed, the set value can be appropriately reduced;	20~3000 [40]

9	Positio	a. Setting the proportional gain of the position loop	1~500
	n	regulator;	[80]
	propor	b. The larger the setting value, the higher the gain, the	
	tional	greater the stiffness, and the smaller the position lag	
	gain	under the condition of the same frequency command	
		pulse. However, too large a value may cause oscillation	
		or overshoot;	
		c. The parameter value is determined according to the	
		specific servo drive system model and load condition;	
10	Positio	a. Set the feed-forward gain of the position loop;	0~100
	n	b. When it is set to 100%, it means that under the	[0]
	feedfo	command pulse of any frequency, the position lag is	
	rward	always 0;	
	gain	c. The feed-forward gain of the position loop increases,	
		and the high-speed response characteristic of the control	
		system improves, but the position loop of the system is	
		unstable and prone to oscillation;	
		d. Unless high response characteristics are required, the	
		feedforward gain of the position loop is usually 0;	

Par	Parame	Detailed explanation of function	Parameter
ame	ter		range
ter	name		[Default
No.			value]
11	Cut-off	a. Set the cut-off frequency of the low-pass filter for the	1~1200
	frequen	feed-forward amount of the position loop.	[300]
	cy of	b. The function of this filter is to increase the stability	
	position	of compound position control.	
	feedfor		
	ward		
	filter		
12	Position comman	a . If the system is programmed to run 5 mm (5000 pulses), the motor needs to rotate once:	1~32767 [1]
	d pulse divider	PA 12 Pulse molecule Actual feedback PA 13 Pulse denominator Command pulse Motor encoder line number (2500 lines) X frequency	
		<u>multiplication number (4)</u> Number of command pulses (5000)	
13	Position		1~32767
10	comman	10000 2	[1]
	d pulse	$=\frac{10000}{5000} = \frac{2}{1}$	1-1
	frequen	b. If the motor is directly connected with the screw	
	cy	screw, the screw screw pitch is 6 mm:	
	division		
	denomi	$\frac{PA12}{PA13} = \frac{10}{\text{Screw pitch (6)}} = \frac{5}{3}$	
	nator	• • • •	
		Note: CNC machine tools can be set with	
		reference to b for more intuitive.	
		Gear ratio range: $1/100 \leq G \leq 100$	
14	Position	You can configure 3 Pulse Input Forms:	0~2
	comman	0: Pulse + symbol;	[0]
	d pulse	1: CCW pulse/CW pulse;	
	input	2. Two-phase quadrature pulse input;	
	mode	See Fig. 4.7 Pulse Form on page 34	

Para mete r No.	Parameter name	Detailed explanation of function	Parameter range [Default value]
15	Position command pulse direction reversal	0: Default direction; 1. The direction is reversed;	0~1 [0]
16	Location completion range	a. During position control, when the value in the position deviation counter is less than or equal to the set value, the position is COIN ON or OFF; b. Under other control modes, it is the speed arrival signal;	0~3000 [20]
17	Position out-of-toler ance detection range	In the position control mode, when the count value of the position deviation counter is greater than the set value of the parameter, the servo driver gives an alarm;	0~3000 [400]
18	Is the position out of tolerance detected	0: The detection is effective; 1: Shielding No.4 alarm, PA17 is invalid;2: Shielding No.4 and No.6 alarms, PA17 is invalid;	0~2 [0]
19	Position command smoothing filtering	This parameter can filter the command pulse smoothly and optimize the acceleration and deceleration when the upper computer has no acceleration and deceleration or exponential acceleration and deceleration. This filtering will not lose pulses, and the execution speed may be delayed.	0~3000 [0]
20	Invalid driver inhibit input	0: CCW, CW input prohibition is valid; 1: CCW and CW inputs are prohibited and invalid; 2: CCW and CW inputs are prohibited and valid, and there is no alarm prompt;	0~2 [1]
21	JOG Running Speed	Set forward and reverse speed settings when setting JOG mode.	-3000~3000 [120]
22	Internal and external speed selection	 0: Take the internal speed; 1: Take external analog quantity (-10V ~ + 10V); 2: Take external analog quantity (0 ~ + 10V; 14, 15 feet control positive and negative); 	0~2 [1]
23	Maximum speed limit	Setting the maximum speed limit of servo motor is related to servo motor, Set the maximum speed of the motor according to the parameter Motor model.	0~6000 [3600]

Para mete r No.	Param eter name	Detailed explanation of function	Parameter range [Default value]
24	Interna 1 Velocit y 1	When PA4=1 and PA22=0: When CNISC1 foot is OFF, SC2 foot is OFF, the internal speed is 1;	-3000~3000 [0]
25	Interna l Velocit y 2/Zero Curren t	 a. When PA4=1 and PA22=0: When CNISC1 foot is ON and SC2 foot is OFF, the internal speed is 2; b. When PA4=4, set the percentage of motor zero-adjusting current; 	-3000~3000 [100]
26	Interna 1 Velocit y 3	When PA4=1 and PA22=0: When CNISC1 foot is OFF and SC2 foot is ON, the internal speed is 3	-3000~3000 [300]
27	Interna l Velocit y 4	When PA4=1 and PA22=0: When CNISC1 foot is ON, SC2 foot is ON, the internal speed is 4	-3000~3000 [-100]
28	Arrival speed	In non-location mode: When the motor speed is greater than this set value, COIN: ON, otherwise OFF. This parameter only judges the motor speed, and has no directivity.	0~3000 [500]
29	Analo g torque comm and input gain	 a. Set the proportional relationship between the input voltage of analog torque and the actual operating torque of the motor; b. The unit of the set value is 0.1 V/100%; c. The default value is 50, corresponding to 5V/100%, that is, the input 5V voltage produces 100% Rated torque; 	10~100 [50]
30	User torque overlo ad	a. Set the user torque overload value, which is the percentage of Rated torque, and the torque limit value is protected in both forward and reverse directions regardless of direction;	0~300 [200]

alarm	b. When $PA31 > 0$, when motor torque > PA30 and	
value	duration $>$ PA31, the driver gives an alarm, the	
	alarm number is Err-29, and the motor stops	
	running. After the alarm, the driver must be	
	powered on again to clear the alarm;	

Para mete r No.	Paramet er name	Detailed explanation of function	Parameter range [Default value]
31	Torque overload detection time	Torque overload detection time in milliseconds; When 0, the user torque overload alarm function is invalid;	0~30000 [0]
32	Control mode switchin g allowed	0: The 11 pins of CN1 (A-CLR) are only effective for alarm clearing; 1: When the parameter PA4=0, the 11 pins (A-CLR) of CN1 are only valid for position and speed switching (the default position is valid); When parameter PA4=1, the 11-pin (A-CLR) of CN1 is only valid for speed and torque switching (default speed is valid); When parameter PA4=6, the 11-pin (A-CLR) of CN1 is only valid for torque and position switching. (The default torque is valid);	0~1 [0]
33	Torque comman d direction reversal	The polarity of analog torque input is reversed. 0: The analog torque command is timing and the torque direction is CCW;; 1: The analog speed command is timing and the torque direction is CW;	0~1 [0]
34	Internal CCW torque limit	Set the internal torque limit percentage value of the motor in CCW direction. Example: Set to 2 times Rated torque, then set the value to 200. This setting value is always valid.	0~300 [250]
35	Internal CW torque limit	Set the internal torque limit percentage value of the motor in CW direction. Example: If it is set to 2 times Rated torque, the value is set to-200. This setting value is always valid.	0~-300 [-250]
36	Filter coefficie nt of comman d pulse signal	PA4=0, valid for position control The larger the setting value, the stronger the anti-interference to the command pulse, and the smaller the frequency of the received pulse, which may also show that it cannot receive the pulse. The timing lead or lag of pulse and direction signals can be adjusted.	0~3 [1]

Para mete r No.	Paramet er name	Detailed explanation of function	Parameter range [Default
			value]
37	Filter coefficie nt of comman d direction signal	PA4=0, valid for position control The timing lead or lag of pulse and direction signals can be adjusted.	0~3 [0]
38	External torque limit	PA4=6, when pin 14 or 15 of CN1 is connected to 0V: CCW, CW torque percentage limit, both positive and negative. PA38 is less than the set value of PA34 and PA35.	0~300 [100]
39	Analog torque comman d zero drift compens ation	The zero drift compensation for analog torque input is positive and negative offset.	-5000~5000 [0]
40	Accelera tion time constant	The setting value indicates the acceleration time of the motor from 0 to 1000r/min. Linear acceleration and deceleration characteristics are only used in speed control mode. If the upper machine has acceleration and deceleration characteristics, this parameter should be set to 1.	1~10000 [100]
41	Decelera tion time constant	The setting value indicates the deceleration time of the motor from 1000 ~ 0r/min. Linear acceleration and deceleration characteristics, only for speed control mode. If the upper machine has acceleration and deceleration characteristics, this parameter should be set to 1.	1~10000 [100]
42	Multi-fu nction terminal switchin g	 0:15 alarm takes effect/1: Shield No.15 alarm; [0001] 0: Select the second zero/1: Select the positioning to complete; [0010] 0: The PA50 parameter limits the maximum rotation/1: The second analog quantity limits the maximum rotation/1; [0100] 	0000~1111 [0001]
43	Analog speed comman	Set the proportional relationship between the input voltage of analog speed and the actual running speed of the motor.	10~3000 [300]

d input	Example: Positive and negative 10V voltage	
gain	corresponds to positive and negative 3000	
-	revolutions, which can be set as $3000/10 = 300$	
	r/min/v, that is, 1V corresponds to 300 revolutions	

Para	Paramet	Detailed explanation of function	Parameter
mete	er name		range
r No.			[Default
			value]
44	Analog	Inverse the polarity of analog speed input	0~1
	speed	0: The analog speed command is timing and the	[0]
	comman	speed direction is CCW;;	
	d	1: The analog speed command is timing and the	
	direction	speed direction is CW;	
	reversal		
45	Analog	The zero drift compensation for analog speed input is	-5000~5000
	speed	positive and negative offset.	[0]
		The value of this parameter will be automatically	
		changed and saved when the analog quantity is	
		automatically set to zero.	
		See table 5.7 a on page 41	
46	Instructi	Low-pass filter for analog speed input.	0~1000
	on zero	The larger the setting, the faster the response speed to	[300]
	drift	the speed input analog quantity and the greater the	
	compens	noise; The smaller the setting, the slower the	
	ation	response speed and the smaller the noise;	
47	Analog	The maximum value of 500 is a delay of 5 seconds,	0~500
	speed	and the default value is 0.8 seconds.	[80]
	comman	Refers to the normal power-on of the drive, the motor	
	d filter	is enabled first, and then the BRK +, BRK-delay	
		conduction brake work, and it is not conductive when	
		giving an alarm.	
48	Brake	The maximum value of 500 is a delay of 5 seconds,	0~500
	delay	and the default value is 0 seconds.	[0]
	conducti	Refers to the normal drive power-on, BRK +,	
	on	BRK-first disconnect the brake does not work to	
	setting	enable delay disconnect this period of time, alarm	
	when	does not delay.	
	motor is		
	enabled		

Para	Paramet	Detailed explanation of function	Parameter
mete	er name	•	range
r No.			[Default
			value]
49	Analog	Speed control: Positive and negative voltage sill	1~5000
	voltage	value setting of analog quantity.	
	sill value		[0]
	speed		
	control		
50	Speed	a: Torque control: corresponds to the maximum speed	1~5000
	limit in	limit.	[2500]
	torque	Note: Overspeed is easy to occur when no load;	
	control	b: Torque control: 10V corresponding speed, PA42	
		switches the second analog quantity to limit the	
		highest speed;	
51	Dynamic	0: CN1 interface, the function of input terminal INH	0~1
	electroni	(command pulse prohibition) is effective;	[0]
	c gear	1: CN1 interface, the function of input terminal INH	
		(dynamic electronic gear switching) is effective,	
		when INH terminal OFF, the input electronic gear is	
		PA12/PA13; When the INH terminal is ON, the input	
		electronic gear is PA52/PA13;	
52	Second	When the PA51=1 command pulse is disabled:	0~32767
	position	When the INH terminal is OFF, the input electronic	[1]
	comman	gear is PA12/PA13; When the INH terminal is ON,	
	d pulse	the input electronic gear is PA52/PA13;	
53	divider Forced	The following functions are ON and OFF with the	0000~1111
55	ON input	The following functions are ON and OFF with the change of parameters 0 and 1 without borrowing	[0000~1111
	at low	external lines. PA53 and PA54 operate the same way.	
	4-bit	SON: Servo enabled; [0001]	
	input	A-CLR: Alarm clearing; [0010]	
	terminal	FSTP: CCW Drive Prohibition; [0100]	
	winninai	RSTP: CW driver disable; [1000]	
L			

mete er r No.	r name	Detailed explanation of function	range
r No.			
			[Default
			value]
54 Fo	orced	CLE/SC1/ZEROSPD:	0000~1111
01	N input	Deviation counter clearing/speed selection 1/zero	[0000]
at	the	speed clamping; [0001]	
up	oper	INH/SC2: Command Pulse Disable/Speed Select 2;	
4-1	bit	[0010]	
inı	put	FIL: CCW torque limit; [0100]	
	rminal	RIL: CW torque limit; [1000]	
55 Lo	ogic	With the change of parameters 0, 1, to achieve the	0000~1111
rev	versal	function of reverse (that is, the original external	[0000]
of		switch circuit input reverse, normally open to	
	bit	normally closed, normally closed to normally open.)	
-	put	SON: Servo enabled; [0001]	
ter	rminal	A-CLR: Alarm clearing; [0010]	
		FSTP: CCW Drive Prohibition; [0100]	
		RSTP: CW driver disable; [1000]	
	igh	With the change of parameters 0, 1, to achieve the	0000~1111
	bit	function of reverse (that is, the original external	[0000]
	put	switch input circuit is reversed, normally open to	
	rminal	normally closed, normally closed to normally open.)	
	gic .	CLE/SC1/ZEROSPD: Error counter cleared/	
inv	version	Speed selection 1/zero speed clamp; [0001]	
		INH/SC2: Command Pulse Disable/Speed Select 2;	
		[0010] FIL: CCW torque limit; [0100]	
		RIL: CW torque limit. [1000]	
57 Oi	utput	With the change of parameters 0, 1, to achieve the	0000~1111
	rminal	function of reverse (that is, the original external	[0010]
	gic	switch output circuit is reversed, normally open to	[0010]
	version	normally closed, normally closed to normally open.)	
		SRDY: Servo ready; [0001]	
		ALM: Servo alarm; [0010]	
		COIN: Location completion/speed arrival; [0100]	
		BRK: Motor braking; [1000]	

Para mete r No.	Paramet er name	Detailed explanation of function	Parameter range [Default value]
58	Demonst rate the time setting of mode 2	When demonstrating Mode 2: The servo motor high-speed aging time setting, the unit is 0.1 minutes.	1~30000 [600]
59	Demonst ration mode selection	PA0=510 PA4=0 takes effect; 0: Turn off the demo mode; 1: Slow demonstration; 2: Quick demonstration;	0~2 [0]
60	Proportio nal gain of current loop	The driver automatically adjusts this parameter according to the specification of the reading motor.	0~32767 [500]
61	Integrati on time constant of current loop	The driver automatically adjusts this parameter according to the specification of the reading motor.	0~32767 [5]
62	Reserva tion	Retain (modification is not allowed)	*
63	Encoder zero bias value	When PA0=4 takes effect, the motor encoder zeroes the offset value.	-32767~ 32767 [0]
65	Incremen tal encoder line number	Incremental encoder line number; Bus encoder This parameter is invalid;	0~32767 [2500]
66	Encoder type selection	 0: ordinary incremental photoelectric encoder; 1. Ordinary incremental line-saving photoelectric encoder; 2: Tamochuan bus multi-turn absolute value encoder (131072 lines); 	0~2 [2]
67	Rated current of motor	Rated current value for the motor: Example: 130ST-M03215LFB motor Rated current is 4.5 A, corresponding to the value of this parameter should be 45;	0~130 [100]

Para mete r No.	Paramet er name	Detailed explanation of function	Paramete r range [Default value]
68	Velocity proportio nal gain coefficie nt	The driver automatically adjusts this parameter according to the specification of the reading motor; This parameter is the coefficient of PA5 parameter; Gain of servo motor = PA5 * PA68;	0~500 [100]
69	Demonst ration mode speed limit	Demo Mode 2, maximum speed limit during fast demo.	0~32767 [3000]
70	Driver feedback pulse output	Settable feedback pulse output The number of feedback pulses output when the motor rotates once.	1~30000 [10000]
71	Pulse output direction selection	Output direction selection of feedback pulse 0: Positive A/B feedback signal output; 1. Output of A/B feedback signal in reverse direction;	0~1 [1]
72	Pulse output molecule	Effective when PA70=0 Feedback pulses output electronic gear molecules.	0~32767 [1]
73	Pulse output denomin ator	Effective when PA70=0 Feedback pulse output electronic gear denominator.	0~32767 [1]
74	Receivin g pulse frequenc y doubling switchin g	Switching of frequency doubling coefficient of servo driver receiving pulse 0: PA12/PA13 is 1/1 servo receiving 10000 pulses/loop; 1: PA12/PA13 is 1/1 servo receiving 131072 pulses/loop;	0~1 [0]
75	The number of full closed-lo op feedback lines is low	Full closed loop feedback line number low PA76 * 10000 + PA75	0~32767 [2500]

76	The number of full closed-lo op feedback lines is high	Full closed loop feedback line number low PA76 * 10000	0~32767 [0]
77	Full closed-lo op feedback inverse control word	Whether the feedback of the second code wheel is reversed; 0: Do not reverse; 1: Inverse;	0~1 [0]
80	485 Commun ication Axis Address	 a.485 Communication modbus rtu Protocol Representative Address: 1, 2, 3 b. When the machine tool is used, the absolute position corresponds to reading: X axis, Y axis, Z axis 	1~32767 [1]

Para mete r No.	Paramet er name	Detailed explanation of function	Parameter range [Default value]
81	485 communi cation baud rate	The corresponding baud rate is 0: 4800; 1: 9600; 2: 19200; 3:38 400; The data bit is 8; Stop bit is 1; RTU format; The longest read length is 10;	0~3 [2]
82	485 communi cation parity check selection	0: Odd check; 1: Even check; 2: No check	0~2 [0]
84	Shielded battery 40 # alarm	 0: When the absolute value encoder is used, the alarm of No.40 battery is allowed to ensure the accuracy of multi-turn signal, and the alarm can be cleared only when the parameter PA99 is set to 1; (Invalid incremental encoder) 1: When the incremental encoder is used, the No.40 alarm is shielded, that is, it can be used when there is no battery, and there is no multi-turn signal memory at this time; 	0~1 [0]
85	Allow alarm number 3	0: Default shielding undervoltage alarm; 1: Allow undervoltage No.3 alarm;	0~1 [0]
88	Paramete r saving	Communication parameters: When the parameters are changed from 0 to 1, the parameters are saved once and restored to 0;	0~1 [0]
90	Encoder single turn value is 16-bit low	a. Decimal: displayed as 0, 1 32767,-327681, 0; b. 485 Communication Unsigned Data Read 0, 1 65535, 65536; (Invalid incremental encoder)	0~65536 [0]
91	Encoder single turn value high 16-bit	 a. Decimal, one-cycle value = PA90+PA91*65536; b. Display as 0, 1; (Invalid incremental encoder) 	0~1 [0]

Para	Parameter name	Detailed explanation of function	Parameter
mete			range
r No.			[Default
			value]
92	Encoder multi-turn	a. Decimal: displayed as 0, 1	0~65536
	value low 16-bit	32767,-327681, 0;	[0]
	value	b.485 Communication Unsigned Data	
		Read 0, 1 65535, 65536;	
		c. If this parameter is lost due to battery	
		power loss, 40 # alarm will be given, and	
		only PA99 parameter will be cleared, and	
		power failure and CLR terminal cannot	
		be cleared;	
		d. Multi-turn value = PA92*131072;	
		(Invalid incremental encoder)	
93	Scaling factor of	Speed proportional gain PA5*PA93:	
	speed proportional		20~300
	gain coefficient		[100]
94	Current loop	Current loop proportional gain	
	proportional gain	PA60*PA94:	20~300
	scaling multiple		[100]
95	Rotation monitoring	Communication can read the motor	0~5000
	restation monitoring	rotation value	0-3000
96	Current monitoring	Communication can read motor current	0~5000
		value	0 2000
97	Alarm code	Communication can read servo drive	0~5000
	monitoring	alarm code	
	monitoring		

98	Current loop	Current loop integration time constant	
	integration time	PA61*PA98:	20~300
	constant scaling		[100]
	multiple		
99	Reset battery power	a. This parameter cannot be saved and is	0~1
	loss No.40 alarm	only used for battery alarm reset;	[0]
		b. This parameter only takes effect when	
		PA84=0;	
		c. PA84=0: When the battery is	
		disconnected from the motor encoder, an	
		alarm appears. After connection, only this	
		parameter is set to 1 to clear the alarm;	
		d. PA84=0: If the battery voltage is low,	
		the alarm cannot be cleared when there is	
		no battery, in order to ensure the	
		accuracy of multi-turn signals;	
		The battery voltage is normally stable at	
		3.6 V (incremental encoder is invalid)	

6.5 [Detailed Explanation of PE Functional

Parameters]

Para mete r No.	Parameter name	Detailed explanation of function	Parameter range [Default value]
10	Notch filter function switch	0000: Segment 1 and Segment 2 notch filters are invalid 0001: The first notch filter is effective 0100: Segment 2 notch filter active 0101: Segment 1 and Segment 2 notch filters are both valid	0000~0101 [0000]
11	Automatic adjustment switch of notch filter	0000: The notch filters in the first and second segments are not automatically adjusted; 0001: Automatic adjustment of notch filter in section 1 0100: Automatic adjustment of notch filter in the second stage 0101: The notch filters in the first and second segments are automatically adjusted.	0000~0101 [0000]
12	Frequency of notch filter in the first segment		50~4000 [0]
13	Quality factor of notch filter in the first segment		50~500 [80]
14	Depth of notch filter in section 1		0~1000 [0]
15	Frequency of notch filter in the second segment		50~4000 [0]
16	Quality factor of notch filter in the second segment		50~500 [80]
17	Section 2 Notch Filter Depth		0~1000 [0]

Para mete r No.	Parameter name	Detailed explanation of function	Parameter range [Default value]
18	Velocity deviation threshold of automatic notch filter		0~2000 [50]
35	The first stage vibration suppression filter vibration suppression frequency		1~1000 [150]
36	The first stage vibration suppression filter vibration suppression gain		1~1000 [100]
37	Vibration suppression coefficient of the first stage vibration suppression filter		0~300 [0]
38	The compensation value of the first stage vibration suppression filter is 1		0~1000 [0]
39	The compensation value of the first stage vibration suppression filter is 2		0~1000 [0]
40	Double-loop feeder and friction compensation function switch	0000: Double loop feed measurement and friction compensation closed 0001: Double-loop measurement feed is effective 0100: Friction compensation is effective 0101: Both double-loop measurement feed and friction compensation are effective 1000: The vibration suppression function in the first stage is effective	0000~0101 [1000]
41	Friction compensation gain	Percentage of proportional gain (bandwidth) of speed loop	10~1000 [100]
43	Friction compensation coefficient	Percentage of friction compensation torque	0~100 [0]
44	Friction compensation frequency compensation value		-10000~10000 [0]

Para mete	Parameter name	Detailed explanation of function	Parameter
r No.			range [Default value]
45	Friction compensation	Friction compensation	1~1000
	gain compensation value	gain/friction compensation gain	[100]
		compensation	
46	Double-loop feeder gain		1~500
	measurement		[40]
47	Gain compensation value		0~1500
	of double-loop		[150]
	measurement feed		
50	Running number of motor		1~300
	in inertia identification		[30]
51	Motor running speed in		1~3000
	inertia identification		[1000]
52	Motor Running		0~300
	Acceleration in Inertia Identification		[10]
53	Inertia identification		0~1000
	running pause time		[0]
54	Initial moment of inertia		0~1000
	ratio in inertia		[200]
==	identification		10- 2000
55	Proportional gain of velocity loop in inertia		10~3000 [150]
	identification		[130]
	Integral time constant of		2~3000
56	velocity loop in inertia		[200]
	identification		
	Position feedforward gain		0~100
57	in inertia identification		[100]

Param eter No.	Parameter name	Detailed explanation of function	Parameter range [Default value]
58	Velocity deviation threshold in inertia identification		0~3000 [500]
59	Proportional gain of position loop in inertia identification		1~1000 [40]

6.6 [Parameter Explanation of PF Motor] (Bus Drive

does not have this function at present)

Param eter No.	Parameter name	Detailed explanation of function	Parameter range [Default value]
0	Motor voltage grade	0-220V 1-380V	0~32767 [0]
1	Rated power of motor	0.01Kw	0~32767 [0]
2	Rated current of motor	0.01A	0~32767
3	Rated torque of motor	0.01Nm	0~32767
4	Maximum torque of motor	0.01Nm	0~32767
5	Rated speed of motor	1rpm	0~32767
6	Maximum speed of motor	1rpm	0~32767
7	Motor moment of inertia	10-6Kgm2	0~32767
8	Magnetic pole logarithm of motor	0.001Ω	0~32767 [0]
9	Phase resistance of motor	0.01mH	0~32767 [0]
10	D-axis inductance of motor	0.01mH	0~32767
11	Q-axis inductance of motor	0.01mH	0~32767 [0]

Param eter No.	Parameter name	Detailed explanation of function	Parameter range [Default value]
12	Back EMF constant of motor	0.01V/Krpm	0~32767 [0]
13	Motor torque constant	0.001Nm/A	0~32767 [0]
14	Electrical time constant of motor	0.01ms	0~32767 [0]
15	Mechanical time constant of motor	0.01ms	0~32767 [0]
16	Motor zero offset is 16-bit low	17BIT encoder: 16384 23BIT encoder: 16384	0~32767 [0]
17	Motor zero offset high 16-bit	17BIT encoder: 0 23BIT encoder: 0	0~32767 [0]
18	Type of motor encoder	17BIT encoder: 16 23BIT encoder: 17	0~32767 [0]
19	Motor encoder line number low 16-bit	17BIT encoder: 0 23BIT encoder: 0	0~32767 [0]
20	Motor encoder line number is low and high	17BIT encoder: 2 23BIT encoder: 128	0~32767 [0]
21	Motor encoder data writing control word	Manual setting or serial debugging software to write the relevant parameters of the motor into PF-0-PF-20; Then PF21 is set to 1, and the driver starts to write the motor parameters to the encoder; In the parameter writing process, PF21 indicates the writing state; PF21 becomes 2, indicating that the parameter is being written; When PF21 is changed to 3, the parameter writing is completed; A change of PF21 to 15 indicates an error in parameter writing;	0~3 [0]

Param eter No.	Parameter name	Detailed explanation of function	Parameter range [Default value]
41	Full closed loop feedback type	0: Close 1: Open	0~1 [0]
42	Full closed loop feedback type	 The full closed-loop feedback type is square wave pulse; The full closed-loop feedback type is BissC absolute value protocol; The full closed-loop feedback type is EnDat absolute value protocol; 	0~3 [0]
43	Transmission bits of full closed-loop absolute value protocol	Full closed-loop absolute value protocol transmits bits, and absolute value encoder is available	1~32 [29]
44	Mixed deviation detection range	The number of feedback lines in full closed loop is%, the deviation exceeds the number of lines in one circle of motor by 20%, and the driving report is 35 #	0~1000 [20]
45	Mixed deviation detection time	Full closed loop feedback deviation detection time, when the deviation exceeds 100MS, drive alarm 35 #	0~1000 [100]
46	Mechanical transmission electronic gear denominator	Mechanical transmission electronic gear molecule	0~32767 [1]
47	Full closed loop feedback type	Mechanical transmission electronic gear denominator If the mechanical transmission reduction ratio is 2, set PF46 to 1 and PF47 to 2	0~32767 [1]
49	Function switch		0~15 [0]
50	Transmission bits of absolute value protocol of motor encoder	Absolute value encoder protocol transmission bit	1~32 [26]

Chapter VII Troubleshooting and Diagnosis

7.1 Alarm List

(Table 7.1)

Alarm	Alarm name	Fault analysis
No.		Fault analysis
1	Overspeed	The speed of servo motor exceeds the set value
2	Overvoltage of main	Three-phase or two-phase power supply voltage
-	circuit	is too high or braking does not work
3	Main circuit undervoltage	Three-phase or two-phase supply voltage is too
		low
4	Position out of tolerance	The value of position deviation counter exceeds
		the set value and the voltage is too low
5	Motor overheating	Motor temperature is too high
6	Motor locked rotor	The motor is stuck, the transmission is not
		smooth, or the load is too large
7	Driver prohibition	CCW, CW have no input or parameter PA20 is
	exception	not 1
11	IPM module failure	IPM Intelligent Module Failure
12	Overcurrent	Excessive motor current
13	Overload	Drive and motor overload (instantaneous
		overcurrent), transmission is not smooth
14	Brake failure	Brake resistance is broken or brake circuit is
16	Thermal overload of motor	faulty The electric calorific value of the motor exceeds
10	Thermal overload of motor	the set value
17	Speed response fault	The speed error is too large for a long time
20	EEPROM error	EEPROM error, parameter save failed
22	Wire arrangement fault	Poor cable connection between control board and
		power board
29	User torque overload	Motor load exceeds the value and duration set by
	alarm	the user
34	Software version	Software burning error or failure to restore
	mismatch	factory value
35	The synchronization error	Synchronization error of full closed loop
	of the second encoder is	feedback and motor feedback is larger than PA78
	too large	
36	Bus Encoder Receive	Check the encoder wire, and pay attention to

Chapter VII Troubleshooting and Diagnosis

	Error	double-ended grounding of shielded wire
37	Data comparison error	Check the encoder wire, and pay attention to
	checking of bus encoder	double-ended grounding of shielded wire
39	Bus encoder feedback	Loose or disconnected encoder line connection
	disconnection	
40	Bus Encoder Battery Loss	Battery disconnection or low voltage
	of Power	
42	Error in reading motor	Incomplete reading of motor parameters in motor
	parameters	encoder

Alarm	Alarm name	Fault analysis	
No.			
43	Motor power mismatch	The rated current of the servo motor exceeds the	
		rated current of the driver	
44	Parameter exception	PF16 is not set correctly	
45	MODBUS communication	Check RS485 connection and parameter format	
	anomaly	to eliminate interference	
60	IPM module temperature is	IPM temperature is higher than PA103 set value	
	too high		
111	The second encoder is	The second encoder incremental encoder ABZ	
	broken	has broken line	
112	Loss of Z pulse of second	Z pulse loss of incremental encoder with second	
	encoder	encoder	

7.2 Troubleshooting

Alar m No.	Alarm name	Running status	Causes	Solution
1	Overspee d	Power on state	 Drive or motor failure 	 Replace the drive
			Check parameters	See if it is enabled internally
		When enabled	 Short circuit between UVW of motor 	■ Check the motor connection
			■ Encoder 0 bit deviation	 Zero adjustment of motor encoder
			■ Incorrect servo parameters	Restore servo parameters
		During the operation of the motor	Short circuit of motor joint	 Whether there is water inlet in the motor joint
			Command speed is too fast	 Reduce command speed
			 Unstable acceleration and deceleration 	 Adjust acceleration and deceleration constant
			 Excessive load 	■ Reduce the load
2	Overvolta ge of main	Power on state	 Power supply voltage is too high 	 Reduce the supply voltage
	circuit		Power waveform is abnormal	 Replace the power supply
			 Server failure 	 Replace the server
		At runtime	 Circuit board failure 	 Replace the server
			 Brake circuit failure 	Check brake resistance
3	Main circuit	Power on state	■ The main supply voltage is too low	■ Change the power supply
	undervolt		Circuit board	 Replace the server

(Table 7.2)

	age	issued the second s	failure	
	age		 Soft start circuit is broken 	 Replace the server
		At runtime	 Insufficient transformer capacity 	 Increase transformer
			Loose power supply wiring	■ Fasten the terminal
			■ Circuit board failure	■ Replace the server
4	Position out of	At runtime	Command speed is too fast	 Reduce command speed
	tolerance		 Input voltage is too low 	■ Check R/S/T power supply
			 Parameter PA17 is too small 	 Appropriate increase of parameters
			Loose or overloaded connection	 Check fastening wiring

Chapter VII Troubleshooting and Diagnosis

Alar m No.	Alarm name	Running status	Causes	Solution
5	Motor overheating	Power on state	 Motor damage Sensor connection is disconnected 	 Replace the motor Check the line and change the sensor
		At runtime	 Motor power is too low 	 Replace high-power motor
			 Short circuit of motor interface 	 Do a good job of waterproof and dustproof
			 Incorrect servo parameters 	 Adapt to the Motor model
6	Motor locked rotor	At runtime	The transmission part is stuck	 Disengage the mechanical part
			Excessive loadMotor fault	Reduce the loadReplace the motor
7	Prohibit exceptions	Power on state	 Check parameters and wiring 	PA20, CW and CWW wiring
8	Position deviation	At runtime	Motor locked rotor	■ Check the load
	counter overflow		 Abnormal command frequency 	 The speed of the upper computer is reduced
			 Wiring error 	 Check the line and connect the shielding layer
			 Encoder damage 	 It is fragile and needs to be replaced
			 Encoder 5V Low Voltage 	Shorten the connection or change the drive
		At runtime	CN2 Plug Contact Bad	■ Fastening CN2 plug

		8	8		
				Hidden danger of cable virtual welding	Replace the cable
				Circuit board chip failure	Check interference and change servers
11	IPM module	Power on state		Circuit board failure	Replace the server
	failure			Short circuit between UVW of motor	Check the line and replace the motor
		At runtime		Motor fault	Check the line and replace the motor
				Poor electrical connection	Check the line and prevent interference
12	Overcurr ent	Power on state or at		The motor is broken	Replace the motor
		runtime		Short circuit between UVW	Check the line and replace the server
				Overload	Change the high-power drive motor

Chapter VII Troubleshooting and Diagnosis

Alar m No.	Alarm name	Running status	Causes	Solution
13	Overloa d	Power on state	■ Motor damage water inflow	 Replace the motor
			■ Bad circuit board	 Replace the server
		At runtime	Excessive mechanical load	 Load reduction
			 Mechanical transmission is not smooth 	 Check mechanical transmission parts
			■ Short circuit between UVW	Check the cable
			■ The brake is not released	 Ensure the stability of brake power supply
14	Brake failure	Power on state	Circuit board failure	 Replacement servo
		At runtime	Bad brake resistance	 Check the brake resistance connection
			 Insufficient braking capacity 	Extend acceleration and deceleration time
			 Excessive mechanical inertia 	 Reduce mechanical inertia
			 Encoder UVW connection is incorrect 	Check the connection and replace it
			 Unstable encoder power supply 	It is required that the voltage of 5V should be stable
			 Wrong number of encoder lines 	 Adjust the number of lines corresponding to parameters
16	Therma	Power on	Servo parameter	Restore the

	1	state	error	factory value
	overloa d of motor	At runtime	 Poor mechanical transmission 	Increase lubrication and reduce load
			■ Long overload time ■	Reduce load and smooth start and stop
17	Speed respons e fault	At runtime	 Long-term error is too large 	Adjust parameter position feedforward
			 Start-stop time is too short 	Adjust acceleration and deceleration time
20	ROM alarm	At runtime	Parameter storage alarm	Recovery parameter replacement servo
22	Wire arrange ment fault	Power on state	■ Replace cable ■	Plug and unplug the cable from the new
29	Insuffici ent torque	At runtime	Exceeding the set torque	Check the parameters PA30 and PA31
			Check motor selection	Refit motor
			 Mechanical overload 	Unload and try again
34	Softwar e	Power on state	■ Software burning ■ error	Replace the drive
	version mismat ch		■ Factory value not ■ restored	DEF recovery parameters

Chapter VII Troubleshooting and Diagnosis

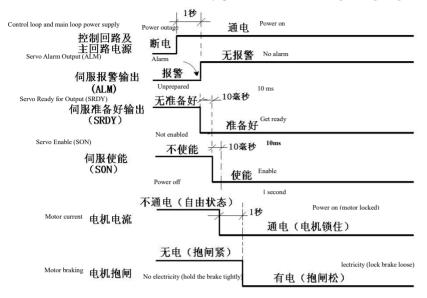
Alar m No.	Alarm name	Running status	Causes	Solution
35	The synchroni zation error of the second encoder is too large	Runtime	 Encoder feedback direction Too heavy a load 	 The feedback direction of DP-POS and DP-SPO should be consistent Check mechanical load
36	Bus Encoder Receive Error	Power on state	 Encoder line disconnected Bad encoder Encoder line error 	 Tighten the encoder line Replace encoder Replace the correct encoder line
37	Data comparis on error checking of bus encoder	Power on state	 Encoder line disconnected Bad encoder Encoder line error 	 Tighten the encoder line Replace encoder Replace the correct encoder line
39	Bus encoder feedback disconnec tion	Power on state	 Encoder line disconnected Bad encoder Encoder line error 	 Tighten the encoder line Replace encoder Replace the correct encoder line
40	Bus Encoder Battery Loss of Power	Power on state	 Loose battery line Battery life expires Bad encoder 	 Check battery wiring Replace the battery Replace encoder
42	Error in reading motor	Power on state	 Incorrect encoder parameters Loose encoder line 	Replace the motorReplace encoder

			-		
	parameter				line
	s				
43	Motor	Power	on	 Excessive model 	tor Replace the low
	power	state		selection	power motor
	mismatch			 Low driving curr 	ent ■ Replace the high
					power driver
44	PF16	Power	on		Correctly match
	anomaly	state			the encoder

Chapter VII Troubleshooting and Diagnosis

Alar m No.	Alarm name	Running status	Causes	Solution	
45	MODBUS communic ation anomaly	Power on state	 Detect RS485 communication baud rate and check bit setting; 2. Detect whether the station address setting of the slave station RS485 communication is set There are repetitions; 3. Detecting whether the baud rate of the slave station is consistent with that of the master station; 4. Whether the communication cable uses double-ended shielding; 		
		At runtime	 check bit setting; Detecting whether the s the slave station RS duplicated; Detecting whether the station is consistent whether the station whether the station whether the station whe	 check bit setting; Detecting whether the station address setting of the slave station RS485 communication is duplicated; Detecting whether the baud rate of the slave station is consistent with that of the master station; 4. Whether the communication cable 	
60	IPM module temperatur e is too high	At runtime	 PIM temperature is too 		
111	The second encoder is broken	At runtime	Second feedback disconnection		
112	Loss of Z pulse of second encoder	At runtime	 Loss of Z pulse of second 	nd encoder	

■ If the Alm red light is on and the alarm number "Err--xx" in the digital tube flashes, it is a driving alarm, so it is necessary to cut off the power in time and find out the alarm reason.


Chapter VIII Debugging and Application

8.1 Quick Debugging Note Item

8.1.1 Make sure the connection is correct

- R, S, T and U, V, W cannot be connected in reverse or loosened.
- L Series input voltage is three-phase 220V, H Series input voltage is three-phase 380V.
- Check that 18 pins in interface CN1 are connected with + 24V, and 36 and 9 pins are connected with 0V correctly, and the polarity cannot be reversed.
- Check whether + 5V in interface CN2 is correct, and the polarity cannot be reversed.
- Check that pin 1 or 2 in interface CN3 must be connected with upper computer 0V.
- Whether the motor connecting cable is short-circuited or grounded.
- The wiring of the same motor must correspond to the same driver.
- 8.1.2 Determine the power-on sequence
- C7-13I Serial Servo High Power and Control Power are energized at the same time.
- If the brake with lock brake motor does not need servo control, it must be satisfied that the brake is electrified more than 1 second after servo is enabled, so as to ensure the position accuracy and safety of the equipment.
- Because of the integrated design of high-voltage and control of C7-13I series servo, the design of power-off and delayed discharge of control and display circuit is adopted, and the internal high-voltage is cut off immediately after the power supply is cut off, and the display and control circuit is automatically cut off after delayed discharge for several seconds.

In order to use the drive smoothly, please read the following timing diagram carefully:

Motor braking

Fig. 8.1 Power-on and Alarm Sequence Diagram

8.2 Position Control (Quick Adjustment of Parameters After Power-on)

Example: C7-13iC30L drive with 110ST-M05415LMB motor (position control)

1. There is no problem in determining the three-phase 220V voltage between R, S and T after being electrified.

2. Do not turn on the servo enable signal temporarily, check whether there is an alarm, and observe the red light (ALM). If there is no red light, it works normally, so you can proceed to the next step.

3. When powered on, the driver will automatically adapt parameters through the bus encoder.

a. Enter Parameter Management Mode "EE-", adjust to "EE-def", press and hold the Enter key for 3 seconds, and then "Finish" appears, indicating that all other

Chapter ₩ Debugging and Application

parameters of the driver except motor parameters have recovered to the factory default values.

b. After restarting and powering on, check that several key parameters of position control (Table 8.1 below) are confirmed to be correct, the upper computer can give an enable signal (or internal enable), and give a pulse after the (Run) green light is on. And observe the dynamic effect of the motor, and modify the gain appropriately to adjust the motor characteristics.

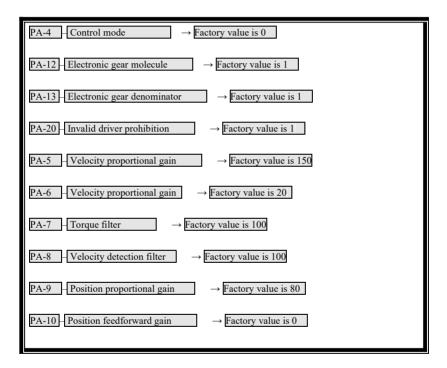


Table 8.2 Adjustment of key parameters of position control

8.3 Speed Control (Quick Adjustment of Parameters After Power-on)

Example: C7-13iC30L drive with 110ST-M05415LMB motor (speed control)

1. There is no problem in determining the three-phase 220V voltage between R, S and T after being electrified.

2. Determine the differential input or single-ended input wiring of speed analog.

3. Do not turn on the servo enable signal temporarily, check whether there is an alarm, and observe the red light (ALM). If there is no red light, it works normally, so you can proceed to the next step.

4. When powered on, the driver will automatically adapt parameters through the bus encoder.

a. Enter Parameter Management Mode "EE-", adjust to "EE-def" and hold down the Enter key for 3 seconds. After "Finish" appears, it means that all parameters of the driver except motor parameters have been restored to the factory default values.

b. After re-energizing, several key parameters of speed control (Table 8.2 below) can be checked to be correct, and the upper computer can give an enable signal (or internal enable). After the (Run) green light is on, an analog signal can be given after automatic zero adjustment. And observe the dynamic effect of the motor, and modify the gain and zero drift value appropriately.

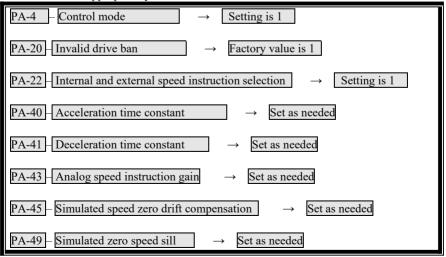


Table 8.3 Adjustment of key parameters of speed control

8.4 Torque Control (Quick Adjustment of Parameters After Power-on)

Example: C7-13iC30Lc drive with 110ST-M05415LMB motor (torque control)

1. There is no problem in determining the three-phase 220V voltage between R, S and T after being electrified.

2. Determine the differential input or single-ended input connection of improved torque analog.

3. Do not turn on the servo enable signal temporarily, check whether there is an alarm, and observe the red light (Alm). If there is no red light, the work is normal, and the next step can be proceeded.

4. When powered on, the driver will automatically adapt parameters through the bus encoder.

a. Enter Parameter Management Mode "EE-", adjust to "EE-def" and hold down the Enter key for 3 seconds. After "Finish" appears, it means that all parameters of the driver except motor parameters have been restored to the factory default values.

b. After re-energizing, several key parameters of torque control (Table 8.3 below) can be checked to be correct, and the upper computer can give an enable signal (or internal enable). After the (Run) green light is on, an analog signal can be given after automatic zero adjustment. And observe the dynamic effect of the motor, and modify the gain and zero drift value appropriately.

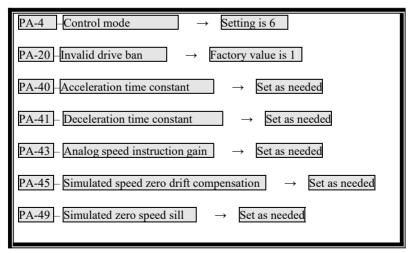


Table 8.4 Adjustment of key parameters of torque control

8.5 Dynamic Electronic Application

- ■Mainly for position control applications.
- ■The so-called dynamic electronic gear:
- It refers to the dynamic switching of electronic gear ratio through the on-off of input terminals in servo drive operation.
- Mainly reflected in: the upper computer maximum output frequency limit, when the electronic gear ratio value is very small, the pulse resolution is high, the maximum speed can not be reached. However, in order to meet the maximum speed, the proportion of electronic gears in the upper computer will be very large, and the position resolution will be low. When the position resolution is low, the transmission accuracy will be affected (the system will send out a pulse only when the system command is 2 microns). In order to improve the speed and transmission accuracy, a number of electronic gear ratios with different ratios are added to switch, so as to achieve better results.
- Example: In the application of CNC machine tools, the first electronic gear ratio is set as "1/1", "PA12/PA13" and the second electronic gear ratio is "10/1", "PA52/PA13".
- ■G91 G01 X 10 F100//First gear ratio 1: 1 is 10mm
- M 16//NC Machine Tool M Code PLC Outputs a Point to Make INH Signal
- ■G91 G01 X10 F100//Second gear ratio 10: 1 is 100mm
- ■M17//NC machine tool M code PLC turns off INH signal
- ■M30//End of program

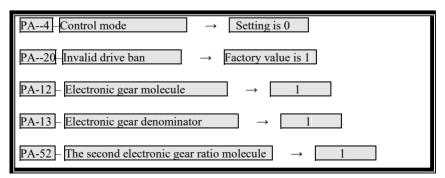


Table 8.5 Electronic Gear Ratio Parameter Adjustment

8.6 Debugging Typical Problems

1. (Run) Enable the green light is not on

a. Check whether the three-phase R, S and T voltages are normal.

b. CN1 Interface 18 pins, + 24V is correct.

c. CN1 Interface 10 pins, whether and 0V connected.

d. If the lamp is not on, try again with internal enable PA53=0001.

2. "Err-36, Err-37, Err-39, Err-40, Err-44" alarm appears

Photoelectric encoder is a typical fragile sensitive element, which needs to be protected in every link

a. The above alarm indicates that there is a problem with the encoder or encoder connection.

b. Whether the shielding layer is well grounded at both ends, and the plug has water or impurities.

c. Whether the long connection will attenuate the encoder power supply at 5V.

d. Interference problem, whether there is a strong magnetic and strong electrical line next to it, and if so, isolate it as much as possible.

3. Jitter of servo motor

a. Determine whether the load and inertia of the servo motor are within the allowable range of the motor.

b. Adjust parameters PA-5, PA-6 and PA-9.

c. Observe the difference of motor jitter at high speed and low speed to add and subtract parameters.

4. Noise in servo motor

a. Determine the load and inertia of the servo motor within the allowable range of the motor.

b. Adjust parameters PA-5, PA-7, PA-8 and PA-9.

c. Observe the difference of motor noise at high speed, low speed and stop to add and subtract parameters.

5. Setting of electronic gear ratio

Take CNC machine tools as an example:

a. The servo motor is directly connected with the screw (the motor rotates 1 revolution and the screw rotates 1 revolution)

If the numerical control system is programmed to 10MM, it will send out 10000 pulses

■The photoelectric encoder is 2500 lines

■The screw pitch is 6MM

PA12 / PA13:

= (command value mm) * (number of encoder lines) * (quadruple frequency)/(pitch) * (number of pulses)

= 10*2500*4/6*10000

= 5/3

Namely: PA12=5, PA13=3;

b. There is a reducer between the servo motor and the screw (the motor rotates 5 times and the screw rotates 2 times)

If the numerical control system is programmed to send out 10000 pulses at 10MM

■The photoelectric encoder is 2500 lines

■The screw pitch is 6MM

PA12 / PA13:

= (command value mm) * (number of encoder lines) * (quadruple frequency) * (number of motor turns)/(pitch) * (number of pulses) * (number of screw turns)

= 10*2500*4*5/6*10000*2

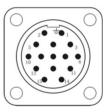
= 25/6

Namely: PA12=25, PA13=6 ;

Chapter IX Servo Motor Part

9.1 Servo Motor Plug Definition and Connection

I. Power socket (4 cores):


Winding lead	U	V	W	
Socket No.	2	3	4	1

U, V and W are the lead ends of servo motor winding coils. Round butt plugs are used for 80-stand motors.

II. Feedback element socket:

■Standard incremental encoder (F) socket (15 cores):

Signal	+5 V	0V	A+	A-	B+	B-	Z+	Z-	U+	U-	V+	V-	W+	W-	
Socket No.	2	3	4	7	5	8	6	9	10	13	11	14	12	15	1

A +, B +, Z +, A-, B-, Z-, U +, U-, V +, V-, W +, W-signals are incremental encoder output signals.

■ Wire -saving incremental encoder (F1) socket (9 cores):

Signal	+5 V	0V	A+	A-	B+	B-	Z+	Z-	
Socket No.	2	3	4	7	5	8	6	9	1

A +, B +, Z +, A-, B-, Z-signals (composite signals) are output signals of line-saving encoder.Round butt plugs are used for 80-stand motors.

Signal	+5V	0V	SD+	SD-	E+	E-	
Socket No.	7	5	6	4	3	2	1

■ Bus Encoder (M) socket (7 cores):

SD + and SD-are data output signals; E + and E-are battery leads.

■Resolver (R) socket (7 cores):

Signal	R1	R2	S1	S3	S2	S4	
Socket No.	2	3	4	5	6	7	1

R1-R2 is the primary signal; S1-S3 and S2-S4 are secondary signals.

III. Power loss brake (lock brake) socket:

Power supply	VDC (DC Power S access requ		
Socket No.	1	2	3

Parameters of 110 frame equipped with power loss brake:

Working voltage: 24VDC (-15% ~ + 10%), working current: $\leq 0.6A$, braking torque: ≥ 8 Nm.

Parameters of 130 frame equipped with power loss brake:

Working voltage: 24VDC (-15% ~ + 10%), working current: $\leq 0.6A$, braking torque: ≥ 12 Nm.

Parameters of 150 frame equipped with power loss brake:

Working voltage: 100VDC (-15% ~ + 10%), working current: ≤ 0.4 A, braking torque: ≥ 30 Nm.

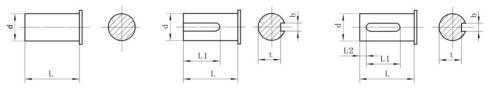
9.2 Servo Motor Selection Instructions

Parametric characteristics						
Frame (mm): 40 ~ 264	Rated torque (Nm) : $1.3 \sim 27$					
Rated speed (rpm): 1500 ~ 6000	Rated power (Kw) : $0.05 \sim 37$					
Standard Feedback Component:	Loss of power brake: optional					
Incremental Encoder (2500C/T)						
Insulation grade: B	Protection level: sealed self-cooling					
	IP65					
Pole pair: 4	Installation method: flange					
Ambient temperature: $0 \sim 55 \text{ °C}$	Ambient humidity: less than 90% (no					
	condensation)					
Excitation mode: permanent magnet type	Adaptive driver operating voltage					
	(VAC): 220					

Description of servo motor model number:

<u>110</u>	<u>ST</u>	-	M	<u>020</u>	<u>30</u>	L	<u>F</u>	<u>B</u>	<u>Z</u>
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)

(1) Base number

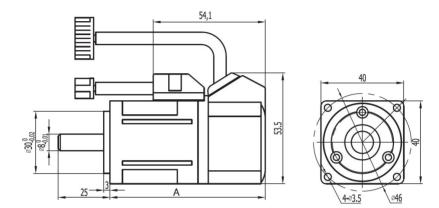

- (2) AC permanent magnet synchronous servo motor
- (3) Feed element type: photoelectric encoder
- (4) Rated torque: Three digits \times 0.1Nm
- (5) Rated speed: Two digits × 100rpm
- (6) Driver working voltage (VAC): L 220V; H 380V ;
- (7) Optional encoder code: S-sine cosine encoder (131072 C/T)

F - Incremental encoder (2500 C/T) F1- Provincial incremental encoder (2500C/T)

- M-Absolute R-Rotational
- (8) Medium inertia
- (9) Installed a power loss brake

9.3 Size and Selection Parameters of Servo Motor

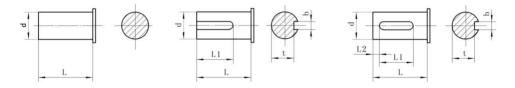
Motor model	40ST-M00130LMB	40ST-M00330LMB		
Power	0.05Kw	0.1 Kw		
Rated torque	0.16Nm	0.32Nm		
Rated speed	3000 rpm	3000 rpm		
Rated current	0.4A	0.6 A		
Rotor inertia	0.025×10 ⁻⁴ Kgm ²	0.025×10 ⁻⁴ Kgm ²		
Maximum current	1.2A	1.8 A		
Maximum torque	0.48Nm	0.96 Nm		
Maximum radial and axial forces:		$ Fr \leq 50N Fs \leq 5N $		



Type A Key

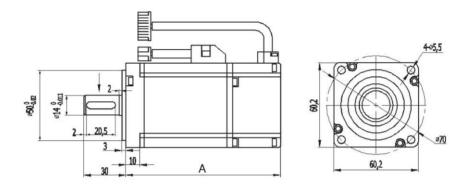
■ 40 bases

Туре В Кеу


Туре С Кеу

Model	A (mm)	B (mm)	L (mm)	L1 (mm)	d (mm)	b (mm)	t (mm)
40ST-M00130LMB	75	54.1	22	19	$\Phi 8 0$	3.5 0	0 -0.1
	75 5	34.1	22	19	-0.013	-0.03	0-0.1
40ST-M00330LMB	L MB 90 54.1	541	22	10	$\Phi 8 0$	3.5 0	0.01
		54.1		19	-0.013	-0.03	0 -0.1

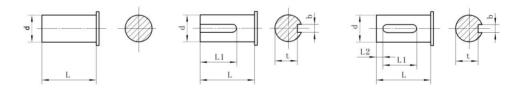
■ 60 bases


Motor model	60ST-M00630LMB	60ST-M01330LMB	60ST-M01930LMB				
Power	0.2 Kw	0.4 Kw	0.6 Kw				
Rated torque	0.64Nm	1.3Nm	1.9 Nm				
Rated speed	3000 rpm	3000 rpm	3000 rpm				
Rated current	1.2A	2.8A	3.5A				
Rotor inertia	0.175×10 ⁻⁴ Kgm ²	0.29×10 ⁻⁴ Kgm ²	0.39×10 ⁻⁴ Kgm ²				
Maximum current	3.6 A	8.4 A	10.5A				
Maximum torque	1.9 Nm	3.9 Nm	5.7 Nm				
Maximum radial and axial forces:							

Type A Key

Туре В Кеу

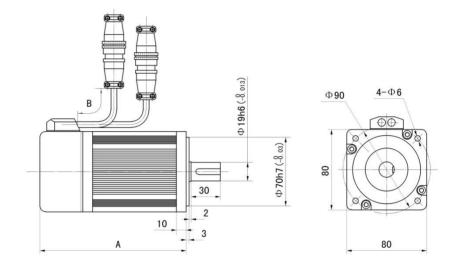
Туре С Кеу



Model	A (mm)	B (mm)	L (mm)	L1 (mm)	d (mm)	b (mm)	t (mm)
60ST-M00630LMB	116	54.1	25	20	Φ14 0	5.5 0	11 0
	116 54	34.1	23	20	-0.013	-0.03	-0.1
	141	54.1	25	20	Φ14 0	5.5 0	11 0
60ST-M01330LMB	141	54.1	23	20	-0.013	-0.03	-0.1
60ST-M01930LMB	169	54.1	25	20	Φ14 0	5.5 0	11 0
	109	34.1			-0.013	-0.03	-0.1

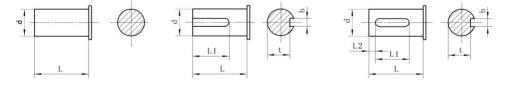
Chapter IX Servo Motor Part

80	bases
-----------	-------


Motor model	80ST-M01330LMB	80ST-M02430LMB	80ST-M03330LMB
Power	0.4 Kw	0.75 Kw	1.0 Kw
Rated torque	1.3 Nm	2.4 Nm	3.3 Nm
Rated speed	3000 rpm	3000 rpm	3000 rpm
Rated current	2.6 A	4.2 A	4.2 A
Rotor inertia	0.74×10 ⁻⁴ Kgm ²	1.2×10 ⁻⁴ Kgm ²	1.58×10 ⁻⁴ Kgm ²
Maximum current	7.8 A	12.6 A	12.6 A
Maximum torque	3.9 Nm	7.2 Nm	9.9 Nm
Maximum radial and axial forces:		Fr≤20	0N s≪50N

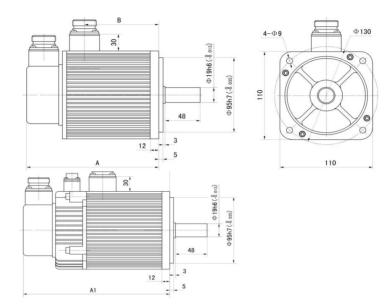
TYPE A KEY

ТҮРЕ В КЕҮ


TYPE C KEY

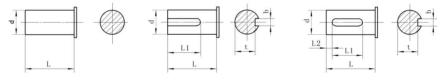
Model	A (mm)	B (mm)	L (mm)	L1 (mm)	d (mm)	b (mm)	t (mm)
80ST-M01330LMB	128	500	30	25	Φ190	6 0 -0.03	15.5 0
0051-101330L101B	120	500	50	23	-0.013	0 0 -0.03	-0.1
80ST-M02430LMB	150	500	30	25	Φ19 0	6 0 -0.03	15.5 0
0051-102450L101B	150	500			-0.013		-0.1
80ST-M03330LMB	165	500	20	25	Φ19 0	6 0 -0.03	15.5 0
	105	300	30	25	-0.013	0 0 -0.05	-0.1

,	JUDICO									
Motor	110ST-M02030	110ST-M04030	110ST-M05030	110ST-M06020	110ST-M06030					
model	LMB	LMB	LMB	LMB	LMB					
Power	0.6 Kw	1.2 Kw	1.5 Kw	1.2 Kw	1.6 Kw					
Rated torque	2.0 Nm	4.0 Nm	5.0 Nm	6.0 Nm	6.0 Nm					
Rated speed	3000 rpm	3000 rpm	3000 rpm	2000 rpm	3000 rpm					
Rated current	4.0 A	5.0 A	6.0 A	6.0 A	8.0 A					
	0.425×10 ⁻³	0.828×10 ⁻³	0.915×10 ⁻³	1.111×10 ⁻³	1.111×10 ⁻³					
Rotor	Kgm ²	Kgm ²	Kgm ²	Kgm ²	Kgm ²					
inertia	(0.489×10 ⁻³	(0.892×10^{-3})	(0.979×10^{-3})	(1.175×10 ⁻³	(1.175×10 ⁻³					
	Kgm ²)	Kgm ²)	Kgm ²)	Kgm ²)	Kgm ²)					
Maximum current	12.0 A	15.0 A	18.0 A	18.0 A	24.0 A					
Maximum torque	6.0 Nm	12.0 Nm	15.0 Nm	18.0 Nm	18.0 Nm					
Maximum radial and axial forces:		$Fr \leq 600N$ $Fs \leq 180N$								


■ **110 bases**

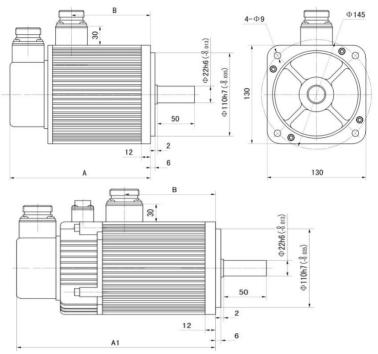
TYPE A KEY

ТҮРЕ В КЕҮ


TYPE C KEY

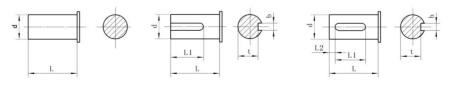
Model	A (mm)	A1 (mm)	B (mm)	L (mm)	L1 (mm)	L2 (mm)	d (mm)	b (mm)	t (mm)	
110ST-M02030L	158	200	76	48	40	3	Φ19 0	6 0 -0.03	15.5	
MB	138	200	70	40	40	5	-0.013	0 0 -0.03	0 -0.1	
110ST-M04030L	185	227	102	48	40	3	Φ19 0	6 0 -0.03	15.5	
MB	165	221	102	40	40	5	-0.013	0 0 -0.03	0 -0.1	
110ST-M05030L	200	242	118	48	40	3	Φ19 0	6 0 -0.03	15.5	
MB	200	200	242	118	48	40	3	-0.013	0 0 -0.05	0 -0.1
110ST-M06020L										
MB	217	259	134	48	40	3	Φ19 0	6 0 -0.03	15.5	
110ST-M06030	217	21/	239	134	48	40	3	-0.013	0 0 -0.03	0 -0.1
LMB										

Motor model	130ST-M04025L MB	130ST-M05020 LMB	130ST-M05025 LMB	130ST-M06025L MB
Power	1.0 Kw	1.0 Kw	1.3 Kw	1.5 Kw
Rated torque	4.0 Nm	5.0 Nm	5.0 Nm	6.0 Nm
Rated speed	2500 rpm	2000 rpm	2500 rpm	2500 rpm
Rated current	4.0 A	5.0 A	5.0 A	6.0 A
Rotor inertia	1.101×10 ⁻³ Kgm ² (1.268×10 ⁻³ Kgm ²)	1.333×10 ⁻³ Kgm ² (1.50×10 ⁻³ Kgm ²)	1.333×10 ⁻³ Kgm ² (1.50×10 ⁻³ Kgm ²)	1.544×10 ⁻³ Kgm ² (1.711×10 ⁻³ Kgm ²)
Maximum current	12.0 A	15.0 A	15.0 A	18.0 A
Maximum torque	12.0 Nm	15.0 Nm	15.0 Nm	18.0 Nm
Maximum radial and axial forces:			$Fr \leq 900N$ $Fs \leq 3$	00N


■ 130 bases

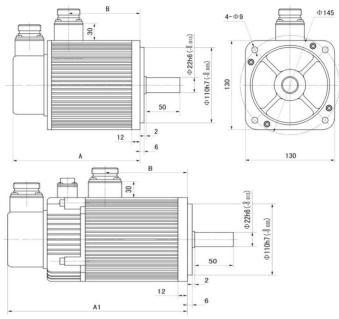
TYPE A KEY

ТҮРЕ В КЕҮ


TYPE C KEY

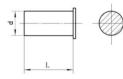
Model	A (mm)	A1 (mm)	B (mm)	L (mm)	L1 (mm)	L2 (mm)	d (mm)	b (mm)	t (mm)
130ST-M04025		205		50	40	E	Φ22 0	60	18.5 0
LMB	163	205	80	50	40	5	-0.013	-0.03	-0.1
130ST-M05020									
LMB	171	213	89	50	40	5	Ф22 0	60	18.5 0
130ST-M05025	1/1	215	07	50	-10	5	-0.013	-0.03	-0.1
LMB									
130ST-M06025	181	223	98	50	40	5	Φ22 0	60	18.5 0
LMB	101	223	90	50	40	5	-0.013	-0.03	-0.1

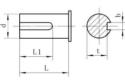
Motor model	130ST-M07720 LMB	130ST-M07725 LMB	130ST-M07730 LMB	130ST-M1001 5LMB				
Power	1.6 Kw	2.0 Kw	2.4 Kw	1.5 Kw				
Rated torque	7.7 Nm	7.7 Nm	7.7 Nm	10Nm				
Rated speed	2000 rpm	2500 rpm	3000 rpm	1500 rpm				
Rated current	6.0 A	7.5	9.0	6.0				
	2.017×10-3	2.017×10-3	2.017×10-3	2.595×10-3				
D () ()	Kgm ²	Kgm ²	Kgm ²	Kgm ²				
Rotor inertia	(2.184×10 ⁻³	(2.184×10 ⁻³	(2.184×10 ⁻³	(2.762×10 ⁻³				
	Kgm ²)	Kgm ²)	Kgm ²)	Kgm ²)				
Maximum current	18.0 A	20.7 A	27.0 A	18.0 A				
Maximum torque	23.1Nm	23.1 Nm	23.1 Nm	30.0 Nm				
Maximum radial and axial forces:			Fr≪900N ↔ Fs≪300N					

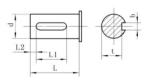

■ 130 bases

Type A Key

Туре В Кеу

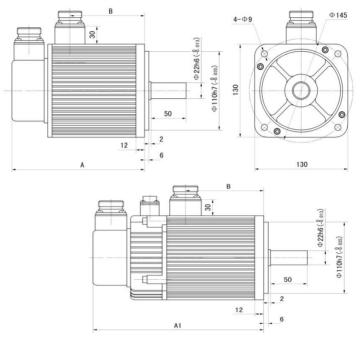

Type C Key




Model	A (mm)	A1 (mm)	B (mm)	L (mm)	L1 (mm)	L2 (mm)	d (mm)	b (mm)	t (mm)
130ST-M07720 LMB 130ST-M07725 LMB 130ST-M07730 LMB	195	237	112	50	40	5	Φ22 0 -0.013	6 0 -0.03	18.5 0 -0.1
130ST-M10015 LMB	219	261	136	50	40	5	Φ22 0 -0.013	6 0 -0.03	18.5 0 -0.1

Motor model	130ST-M10025LMB	130ST-M15015LMB	130ST-M15025LMB
Power	2.6 Kw	2.3 Kw	3.9 Kw
Rated torque	10.0 Nm	15.0 Nm	15.0 Nm
Rated speed	2500 rpm	1500 rpm	2500 rpm
Rated current	10.0 A	9.5 A	17.0 A
	2.595×10 ⁻³ Kgm ²	4.32×10 ⁻³ Kgm ²	4.32×10 ⁻³ Kgm ²
Rotor inertia	$(2.762 \times 10^{-3} \text{Kgm}^2)$	$(4.487 \times 10^{-3} \text{Kgm}^2)$	(4.487×10 ⁻³ Kgm ²)
Maximum current	30.0 A	28.5 A	51.0 A
Maximum torque	30.0 Nm	45.0 Nm	45.0 Nm

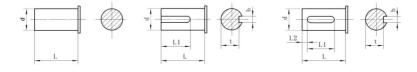
■ 130 bases



Type A Key

Type B Key

Type C Key

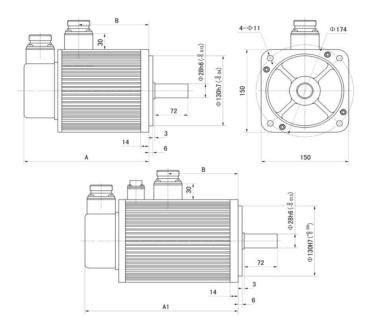

Model	A (mm)	A1 (mm)	B (mm)	L (mm)	L1 (mm)	L2 (mm)	d (mm)	b (mm)	t (mm)
130ST-M10025	219	261	136	50	40	5	Φ22 0	60	18.5 0
LMB			100			- C	-0.013	-0.03	-0.1
130ST-M15015 LMB		200	104	50	40	-	Φ22 0	60	18.5 0
130ST-M15025 LMB	267	309	184	50	40	5	-0.013	-0.03	-0.1

■ 150 bases

Motor model	150ST-M15025LMB	150ST-M18020LMB
Power	3.8 Kw	3.6 Kw
Rated torque	15.0 Nm	18.0 Nm
Rated speed	2500 rpm	2000 rpm
Rated current	16.5 A	16.5 A
Rotor inertia	6.15×10 ⁻³ Kgm ²	6.33×10 ⁻³ Kgm ²
Rotor inertia	$(6.75 \times 10^{-3} \text{Kgm}^2)$	$(6.93 \times 10^{-3} \text{Kgm}^2)$
Maximum current	49.5 A	49.5 A
Maximum torque	45.0 Nm	54.0 Nm

■ 150 bases

Motor model	150ST-M23020LMB	150ST-M27020LMB
Power	4.7 Kw	5.5 Kw
Rated torque	23.0 Nm	27.0 Nm
Rated speed	2000 rpm	2000 rpm
Rated current	20.5 A	20.5 A
Rotor inertia	8.94×10 ⁻³ Kgm ²	11.19×10 ⁻³ Kgm ²
Kotor inertia	$(9.54 \times 10^{-3} \text{Kgm}^2)$	(11.79×10 ⁻³ Kgm ²)
Maximum current	61.5 A	61.5 A
Maximum torque	69.0 Nm	81.0 Nm



Type A key

Type B key

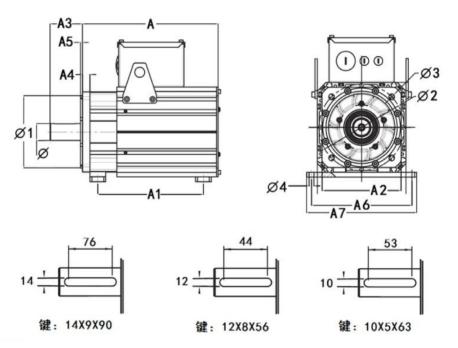
Type C key

150 bases:

Model	A (mm)	A1 (mm)	L (mm)	L1 (mm)	L2 (mm)	d (mm)	b (mm)	t (mm)
150ST-M15025LMB	231	293	72	60 (Type B) 55 (Type C)	5	Ф28 0 -0.013	8 0 -0.03	24 0 -0.1
150ST-M18020LMB	250	312	72	60 (Type B) 55 (Type C)	5	Ф28 0 -0.013	80-0.03	24 0 -0.1
150ST-M23020LMB	280	342	72	60 (Type B) 55 (Type C)	5	Ф28 0 -0.013	8 0 -0.03	24 0 -0.1
150ST-M27020LMB	306	368	72	60 (Type B) 55 (Type C)	5	Ф28 0 -0.013	80-0.03	24 0 -0.1

■180 bases:

Motor model	Rated power	Rated	Rated torque	Rated speed
	Kw	current A	Nm	Rpm
180-027020HMB	5.5	13.5	27	2000
180-036020HMB	7.5	20	36	2000
180-045018HMB	9	23.5	45	1800
180-055018HMB	11	30	55	1800
180-070016HMB	12.5	38	70	1600


■200 bases:

Motor model	Rated power	Rated	Rated torque	Rated speed
	Kw	current A	Nm	Rpm
200-038015HMB	6	11.6	38	1500
200-042020HMB	8.7	18.8	42	2000
200-055015HMB	20.2	16.6	55	1500
200-058020HMB	12	24.3	58	2000
200-074015HMB	26.5	26.5	74	1500
200-087020HMB	18.2	36.7	87	2000
200-103015HMB	16.4	33.2	103	1500
200-095620HMB	20.4	40.1	95.6	2000
200-128015HMB	20	41	128	1500
200-135020HMB	28.3	60.5	135	2000
200-186015HMB	29	61	186	1500
200-175020HMB	36.7	73.7	175	2000

■264 bases:

Motor model	Rated	Rated	Rated torque	Rated speed	
	power Kw	current A	Nm	Rpm	
264-220015HMB	37	72.73	220	1500	
264-215020HMB	49	96	215	2000	
264-210015HMB	33	62	210	1500	
264-269020HMB	56.3	120.7	269	2000	
264-380015HMB	60	106	380	1500	
264-349017HMB	62	145	349	1700	
264-450015HMB	70	130	450	1500	
264-481018HMB	91	196	481	1800	

180 ~ 264 bases:

Key

key

key

Chapter IX Servo Motor Part

Servo motor model	A	A1	A2	A3	A4	A5	A6	A7	Ø	Øl	Ø 2	Ø3	Ø
180-027020HMB	337	*	<mark>18</mark> 0	79	20	4	*	site	35	150	200	13.5	*
180-036020HMB	361	*	180	79	20	4	*	ste	35	150	200	13.5	*
180-045018HMB	381	*	180	79	20	4	*	*	35	150	200	13.5	*
180-055018HMB	415	*	180	79	20	4	*	*	35	150	200	13.5	*
180-070016HMB	447	*	180	79	20	4	*	*	35	150	200	13.5	*

Servo motor model	A	A1	A2	A3	A4	A5	A6	A 7	Ø	Ø 1	Ø 2	Ø3	Ø4
200-042020HMB	<mark>344</mark>	267	200	82	19	5	254	278	42	180	215	1 <mark>4.5</mark>	12
200-058020HMB	379	285	200	82	19	5	254	278	42	180	215	14.5	12
200-087020HMB	416	312	200	82	19	5	254	278	42	180	215	14.5	12
200-095620HMB	457	354	200	82	19	5	254	278	42	180	215	14.5	12
200-135020HMB	488	396	200	82	19	5	254	278	42	180	215	14.5	12
200-175020HMB	559	471	200	82	19	5	254	278	42	180	215	14.5	12
264-215020HMB	47 0	262	264	112	32	4	356	384	48	250	300	19	18
264-269020HMB	577	370	264	112	32	4	356	<u>384</u>	48	250	300	19	18
264-349017HMB	684	476	264	112	32	4	356	384	48	250	300	19	18
264-481018HMB	791	583	264	112	32	4	356	384	<mark>4</mark> 8	250	300	19	18

Appendix1

Example of communication between driver and Mitsubishi plc485

1. Driver moC7bus communication settings (driver needs 485 communication function model)

Before communication, the parameters related to communication in the driver should be set in advance, and the upper computer will communicate with the driver according to the corresponding communication setting parameters.

PA80	485 communication axis address	485 communication modbus rtu protocol representative address: 1, 2, 3	1~32767 [1]
PA81	485 communication baud rate	The corresponding baud rate is 0: 4800; 1: 9600; 2: 19200; 3:38 400; The data bit is 8; Stop bit is 1; RTU format; The longest read length is 10;	0~3 [2]
PA82	485 communication parity check	0: Odd check; 1: Even check; 2: No check	0~2 [0]

2. Data frame format

The driver MoC7Bus communication from our company uses RTU mode, and the characters sent are expressed in hexadecimal numbers. The specific frame format is defined as follows:

Substati	Function	Data	CRC CHECK CODE
on No.	code		
1 byte	1 byte	N bytes	2 bytes, Low byte in front

Where, the data format (11 bits) when each byte is transmitted is as follows:

Start bit	Data bit	Parity bit	Stop bit
1-bit	8-bit	0-bit (no parity), 1-bit (odd parity or even parity)	2-bit (no check), 1-bit (check)

When data is sent, the low bit is before and the high bit is after.

3. Read and write of driver parameters

(1) Read of parameters (continuous read of multiple parameters)

Request:

Substation No.	Function code	Start address		Register bytes (N)		CRC CHECK CODE		
1 byte	1 byte	2 bytes 2 bytes		bytes	2 bytes			
Drive station address	0x03	High byte	Low byte	High byte	Low byte	Low byte	High byte	

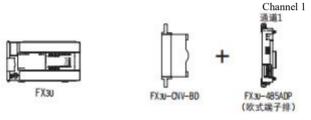
Response:

Substation No.	Function code	Register by	ter bytes (N*2) Register contents			CRC CHECK CODE		
1 byte	1 byte	2 by	ytes	N*2 bytes			2 bytes	
Drive station address	0x03	High byte	Low byte	High byte	Low byte		Low byte	High byte

(2) Write of parameters

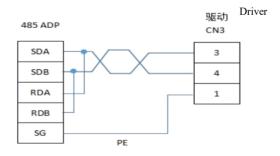
Request:

Substation No.	Function code	Start address		Register contents		CRC CHECK CODE	
1 byte	1 byte	2 bytes		2 bytes		2 bytes	
Drive station address	0x06	High byte	Low byte	High byte	Low byte	Low byte	High byte


Response:

Substation No.	Function code	Start address		Register contents		CRC CHECK CODE	
1 byte	1 byte	2 bytes		2 bytes		2 bytes	
Drive station	006	T		High	T h	T 1 4	High
address	0x06	High byte	Low byte	byte	Low byte	Low byte	byte

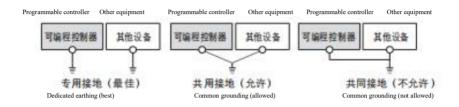
4. Drive parameter modobus address


The PA mode parameters of the driver can be viewed or modified through communication, and the modobus address of the parameter register in the sending message is in hexadecimal format of Parameter No. For example, read the PA-95 motor speed, and convert 95 to 5F in hexadecimal.

5. PLC hardware description (the plc model used in this example is FX3U, and the driver is with 485 communication model. Refer to the basic program prepared by Mitsubishi Communication Manual. If the configuration is different, please change it according to Mitsubishi Communication Manual)

European terminal

6. Connection of RS-485 Communication


Built-in resistor of FX3U-485ADP is set to 110 ohm position

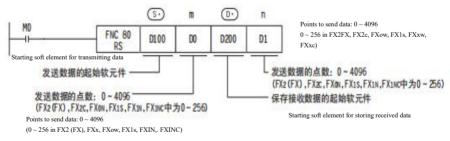
7. Grounding

- ① Please implement the following contents when grounding
- 2 Please use Class D grounding. (Ground resistance below 100 ohms)
- ③ Please use special grounding as much as possible.

④ If special grounding cannot be used, please use "common grounding" in the following figure

5 Please use grounding wire with thickness above AWG14 (2MM)

8. Mitsubishi FX3U PLC uses 485 communication related software

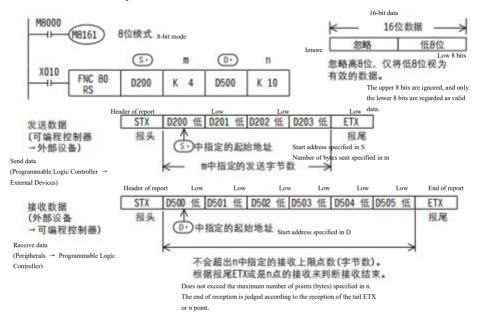

components

Soft component number	Name	Content			
M8063	Serial Channel	Set ON when a communication error occurs			
	Error (Channel 1)	When serial communication error (M8063) is ON, save			
		the error code in D8063.			
M8120	Used to maintain	Maintain the communication setting state. (for FXov			
	communication	programmable controller).			
	settings				
M8121	Wait to send flag	Set ON while waiting to send			
	bit				
M8122	Send a request	After setting the send request, start sending.			
M8123	End of reception	It can be ON at the end of reception. When the reception			
	flag bit	end flag bit (M8123) is ON, no more data can be			
		received.			
M8124	Flag bit of wave	Set ON synchronously with CD signal			
	cutting detection				
M8129*1	Flag bit for	When the data is received, it is within the time set in			
	judging timeout	timeout time setting D8129). Set ON when the data to be			
		received is not received			
M8161	8-bit processing	Sending and receiving data is switched between 16-bit			
	mode	data and 8-bit data.			
		00: 8-bit mode			
		OFF: 16-bit mode			
*1. FXoN FX2 (FX), FX2	c, and FX2N (below '	Ver.2. 00) have not yet corresponded.			

Soft component number	Name	Content			
D8063	Display error code	When the serial pass estimation error (6063) is 0, the error code is saved in D8063.			
D8120	Setting of communication format	You can set the communication format.			
D8122	Remaining points of transmitted data	Save the remaining points of the sent data.			
D8123	Monitoring of receiving points	Save the points of received data.			
D8124	Header	Set header, machine start value: STX (HO2)			
D8125	End of report	No final report, initial value: ETX (HO3)			
D8129*1	Setting of timeout time	Set the timeout time.			
D8045* 2	Display general estimation parameters	Save the communication parameters set in the programmable controller.			
D8419*2	Display running mode	Save the executing communication function			
* 1. FXoN FX2 (FX	K), FX2c, FX2N (below Ver	.2. 00) are not yet corresponding			
* 2. Only FX3U and	d FX3uc programmable con	trollers correspond			

9. Use of RS instruction

1. Instruction interpretation

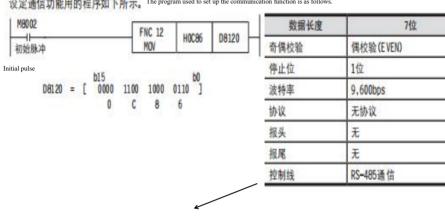

2. Use of instructions

Refer to Section 6.2. 5 for actions when receiving

3. Choice of 16-bit 8-bit mode

8-bit processing mode when M8161 is ON and 16-bit processing mode when M8161 is OFF. As shown in the following figure, when M8161 is set, only the lower 8-bit of the first 4 bytes of D200 are sent as valid data. Only low 8-bit is valid when receiving. This communication example uses 8-bit mode.

Bit number	Name	Content				
		0 (bit OFF)		1 (bit ON)		
b0	Data length	7-bit		8-bit		
b1b2	Parity check	b2, b1 (0.0): None (0.	1): Odd Check (00D)	(1, 1): EVEN Check		
		(EVEN)				
b3	Stop bit	1-bit		2 -bit		
b4b5b6b7	Baud rate (bps)	b7,b6,b5,b4		o6,b5,b4		
		(0,0,1,1):300	(0,1,1	,1):4,800		
		(0,1,0,0):600		0,0):9,600		
		(0,1,0,1):1,200	(1,0,0,1)19,200		
		(0,1,1,0):2,400				
b8	Header of report	N/2	N/A			
			STX (02H)			
b9	End of report	N/2	Yes (08125), Initial value:			
			ETX (03H)			
b10b11	Control line	No agreement	b11,b10			
			(0, 0): No < RS-23			
				e < RS-232C interface >		
				nk mode < RS-232C interface >		
				2NC, FX3UC above Ver.2.		
			00)			
			(1.1): Modem mod			
				ce, RS-485/RS-422 Interface		
			*2			
		Computer link	b11,b10			
			(0, 0): RS-485/RS-			
1.12			(1.0): RS-232C int	ertace		
b12			n't be used			
b13*1	And check	Do not attach		Additional		
1 1 4 4 1						
b14*1	Agreement.	No agreement		Private protocol		
1 1 5 * 1						
b15*1	Control sequence	Protocol Format 1		Protocol Format 4		


4. Setting of D8120 (modify as needed)

1. When using protocol-free communication, please be sure to use it in "0" state.

2. RS2 instruction can set up to 4 headers and trailers.

3. When RS2 instruction is used to execute protocol-free communication, sum check is attached after the end of the report.

In the case of additional sum check, please be sure to set the end of the report.

Data length	7 -bit
Parity check	EVEN check (EVEN)
Stop bit	1-bit
Baud rate	9,600bps
Agreement	No agreement
Header of report	None
None	None
Control line	RS-485 communication

设定通信功能用的程序如下所示。The program used to set up the communication function is as follows.

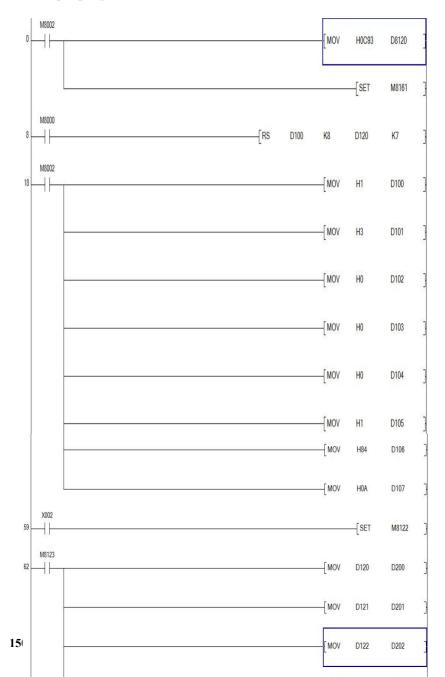
9. MoC7bus-rtu protocol message description

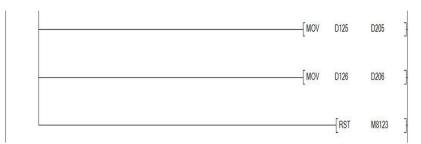
Send message format:

Slave station No.	Function code	Data area	CRC-16 check low bit	CRC-16 check high bit	
8-bit	8-bit	N*8-bit	8-bit	8-bit	

Data format returned:

Slave station No.	Function code	Returns the number of bytes of data	Return data	CRC16 CHECKSUM
8-bit	8-bit	8-bit	N*8-bit	16-bit


The slave number is 1 byte, and its value ranges from 0 to FFH. Exceptionally, if this value is 0, it is used as the broadcast message identification of the master station. Therefore, the slave number used physically can only be between 01H and FFH (i.e. between 1 and 255).


The function code is 1 byte, which is used to select a command (read, write or answer to check whether it is correct, etc.), and the valid function code range is between $1 \sim 255$. This drive supports 03H read and 06H write commands.

The data area records the address and number of registers read. For example, this example reads the parameters of pa0, and the data area is 00 00 00 01. (The data type is hexadecimal. The first 16 bits are the address, and the last 16 bits are the number of reads.)

Please refer to modobus-rtu protocol CRC calculation method, or use software calculation.

10. Sample program

① This example reads the driver pa0 parameters

(2) D100 places the moC7bus address of the drive, corresponding to the drive pa80 here 0X01.

 \bigcirc D101 places the function code, where 0X03 is the read function.

(4) The address of the drive register read by D102 D103 is 0X00 here.

(5) The number of D104 D105 placed and read is 0X01 here.

(6) D106 D107 is CRC check, which can be calculated by software or with reference to crc-16/moC7nus calculation method.

 \bigcirc Set m8122 to read driver parameters when X2 is executed.

Appendix 2 Driver with Siemens CNC system (With Siemens 802S/801/802C/808D)

1: Drive parameter setting requirements are as follows

Parame	Parameter name U		Parameter	Default
ter No.			range	value
5	Velocity proportional gain	Hz	50~2000	150
36	Filter coefficient of command pulse signal	%	0~3	1

Note:

■ The driving parameters PA36=1 and PA37=0 when Siemens system is equipped, otherwise the repeated positioning accuracy will be affected.

■ If the deviation of returning to zero is inconsistent, the driving No.5 parameter can be appropriately increased.

■ Pins 36 and 9 of the driver CN1 interface must be connected with the shielding layer and the metal shell of the system. Otherwise, the return to zero accuracy will be affected.

2: Siemens system parameter setting requirements are as follows

Parameter No.	Parameter name	Required value
34040	Search of Z pulse velocity	500~2000

Note:

■ If there is a large deviation back to zero, the system parameter 34040 can be appropriately increased.

Appendix 3 Wiring diagram of driver with Siemens 801/802S system

Siemens 801 (X4 西门子801 (X4接口) SBF Drive (Door SBF驱动器(西门子专用性) interface) Speciality) Z-axis x-axis X-axis Z-axis Z轴 X轴 Z轴 X轴 SBF Drive (Door Speciality) Shielding 屏蔽层上 屏蔽层上 36 36 西门子X4 SBF Drive (Door Speciality) 西门子X4 Encoder Signal ground 插头金属壳 插头金属壳 编码器 编码器 9 9 ave 信号地 信号地 PULS2 4 PUI S1 1 PULS+ 32 PULS+ 32 PULS-PULS2-N PULS1-N 14 17 33 33 PULS-2 DIR2 5 DIR1 SIGN+ 34 SIGN+ 34 SIGN-DIR2-N 18 DIR1-N 15 SIGN-35 35 OZ-OZ-29 29 西门子801 (X20接口) Siemens 801 (X20 interface) 10 SON 10 SON Z-axis X-axos Z轴 X轴 18 COM+ 18 COM+ BERO2 BERO1 4 3 外接+24电源 -28 0Z+ 28 0Z+ External +24 power supply 2 NCRDY-K2 Upper and external 0V power supply NCRDY-K1 1 外接0V电源 M24 10

西门子801配驱动器接线图

Appendix 4 Wiring diagram of driver with Siemens 808D system

Siemens 80	08D X51\ X52\ X53	(DB15 core ho	le)	Dri	Driver CN1 port (36 cores high density)			
	西门子808D X51\x52\x53 (DB15芯孔)			10.00 million 200]器CN1 5芯高密			
Green	绿色	PULSE+	1	32	PULS+	绿色	Green	
Yellow	黄色	PULSE-	9	33	PULS-	黄色	Yellow	
Grey	灰色	DIR+	2	34	SIGN+	灰色	Grey	
Pink	粉色	DIR-	10	1 35	SIGN-	粉色	Pink	
Black	黑色	RDY1	12	8	SRDY+	黑色	Black	
Purple	紫色	RDY2	14	1 25	SRDY-	紫色	Purple	
Red blue	红蓝色	ALM1	8	1 26	ALM+	红蓝色	Red blue	
Blue	蓝色	ALM2	15	27	ALM-	蓝色	Blue	
Red	红色	M24	13	10	SON	红色	Red	
				18	COM+]	
White yellow	白黄色	+24V	5	28	OZ+	白黄敬	hite yellow	
Pink	粉灰色	BERO	4	29	OZ-	粉灰色	Pink	
				30	BRK+		BRK+ 22 0.3平方毫米	
				31	BRK-		线缆延长2米 BRK-	
	Metal s	hell	属壳	36	屏蔽层 Metal shel		59 0.3mm ² The cable extended by 3	

成对做线时,一根如上图纸做,一根30、31脚不用焊延长线。

驱动器参数修改: PA-36改为2,

PA-57修改方法: 当系统显示驱动器报警,而驱动器实际未报警,可修 改此参数,方法为,将此参数的倒数第二位0000取反即可,即:1改0、0改1. When making wires in pairs, one should be made as shown in the above drawings, and one 30, 31 legs should not be welded with extension wires.

Driver parameter modification: PA-36 is changed to 2,

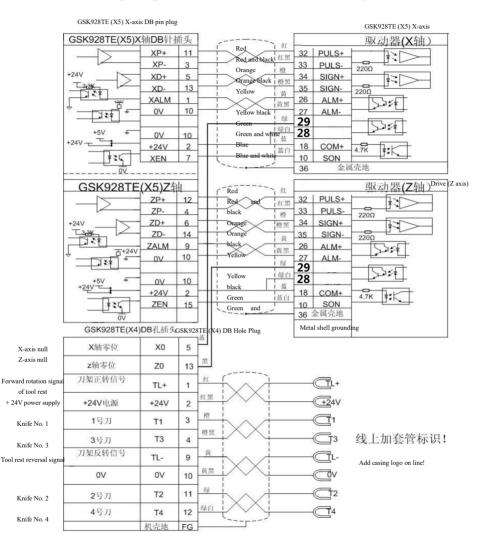
PA-57 Modification method: When the system shows the driver alarm, but the driver does not actually alarm, you can modify this parameter. The method is to reverse the penultimate bit 0000 of this parameter, that is, 1 to 0, 0 to 1.

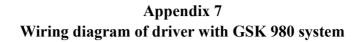
Appendix 5 Wiring diagram of driver with Siemens 802C system

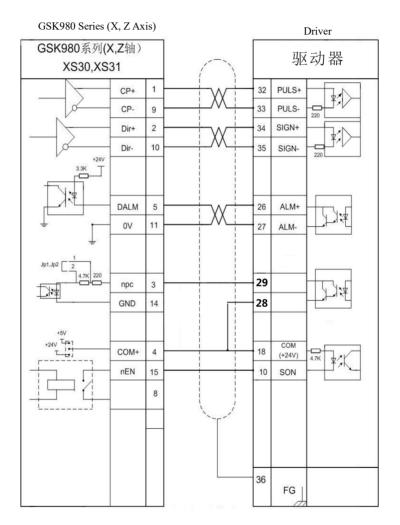
SIEMENS	8020	X7(速度:	指令利	D使能信号	给定)		Driver side CN1 驱动器侧CN1	
X 轴		Y轴		Z轴		+24V	驱动器 Drive	r
		Y Enable 1		Z Enable 1		-	COM+	
X使能1	14	Y Enable 1 Y使能1	15	ZEnable 1 Z便能1	16	10	SON	
X使能2	47	Y使能2	48	Z使能2	49	<u> </u>		
		Y given +		Zgiven +		24 1 Сом		
X给定+	1	Y given - Y给定+	35	Z given - Z给定+	3	19	AS+	
X给定-	34	Y给定-	2	Z给定-	36	20	AS-	
	-							
SI	EMEN	IS 802C (轴编码	马器反馈信	号)	is Encoder Feedback Signal)	AGND	
SI X轴()		IS 802C(Y轴(X4	SA6	马器反馈信 Z 轴(X	5 20 1	is Encotler Feedback Signal) 23		
		CONCERNAL BARES	SA6		5 20 1	is Encotter Feedback Signal)	OB+(原始信号OB+)	
X轴()	(3)	Y轴(X4	4)	Z轴(X	(5)		OB+(原始信号OB+) OB- (原始信号OB-)	signal Ol OB-(orig signal Ol
X轴() A+	(3) 15	Y轴(X4 A+	4) 15	Z轴(X A+	5) 15	3	OB+ (原始信号OB+) OB- (原始信号OB-) OA+ (原始信号OA+)	signal Ol OB-(orig signal Ol OA + signal Ol
X轴() A+ A-	(3) 15 14	Y轴(X4 A+ A-	4) 15 14	Z轴(X A+ A-	5) 15 14		OB+ (原始信号OB+) OB- (原始信号OB-) OA+ (原始信号OA+)	signal Ol OB-(orig signal Ol OA + signal O OA-(orig
X轴() A+ A- B+	(3) 15 14 13	Y轴(X4 A+ A- B+	4) 15 14 13	Z轴(X A+ A- B+	5) 15 14 13		OB+(原始信号OB+) OB- (原始信号OB-) OA+ (原始信号OA+)	signal Ol OB-(orig signal Ol OA + signal O OA-(orig

驱动器参数调整: PA-4调整为1、 PA-22调整为1、 PA-43按需要设置

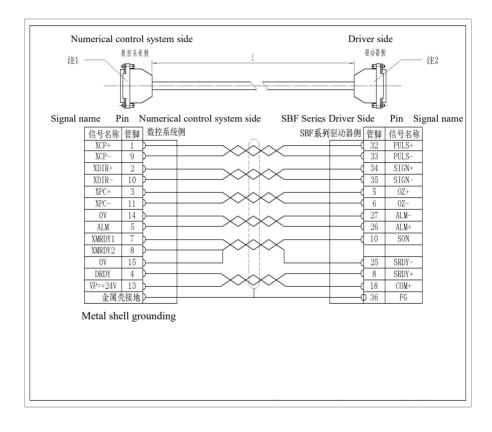
西门子802C系统参数调整:西门子802C系统的参数30130要改为"1"。


按以上接线图接好线后,先调整好以上参数,再系统上电,驱动器上电,打开驱动器使能,系统保持零速状态,调整驱动器AU-Spd(模拟量速度零偏自动调整)。调 整方法为:在驱动器的第一层菜单界面找到AU,再按enter一次,显示AU-Spd,再 按住Enter不放,并保持3秒,就会显示FINISH(成功),最后保存参数即可。

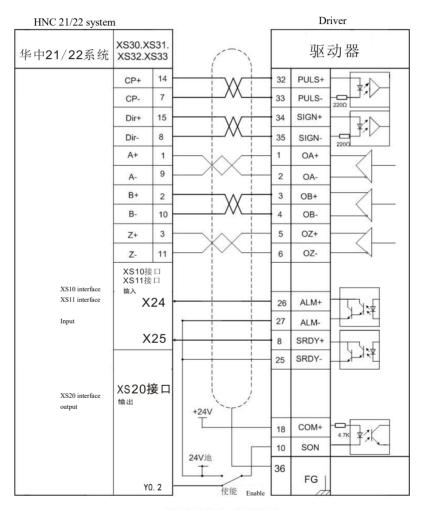

Driver parameter adjustment: PA-4 is adjusted to 1, PA-22 is adjusted to 1, and PA-43 is set as required


Siemens 802C system parameter adjustment: The parameter 30130 of the 802C system should be changed to "1".

After connecting the wires according to the above wiring diagram, adjust the above parameters first, then power up the system, power up the driver, open the driver to enable, keep the system in zero speed state, and adjust the driver AU-Spd (automatic adjustment of analog speed bias). The adjustment method is: find AU in the--layer menu interface of the drive, press Enter again to display AU-Spd, hold Enter again, and keep it for 3 seconds, then FINISH will be displayed, and finally save the parameters.


Appendix 6 Wiring diagram of driver with GSK 928 system

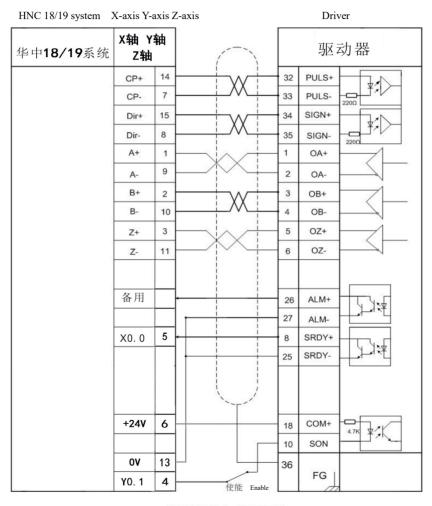
Appendix 8 Wiring diagram of driver with KND CNC system


Appendix 9 Wiring diagram of driver with Syntec EZ4 system Syntec numerical control system Servo driver 15-pin DB plug 新代数控系统 伺服驱动器 15芯针DB插头 11 32 PULS+ CW+ 12 CW-33 PULS--A, B orthogonal pulse A、B正交脉冲 2200 SIGN+ CCW+ 13 34 CCW-14 35 SIGN-220 A+ 1 1 OA+ 2 2 OA-A-使用A/B正交脉冲信 号,系统各轴的分辨率 B+ 3 3 OB+ 应调整为: 2500。然后 Using A/B orthogonal 再4倍频。 B-4 4 OBpulse signal, the resolution of each axis 5 5 OZ+ 7+ of the system should be adjusted to 2500. OZ-6 6 Z-And then quadruple the frequency XS10, XS11 ALM+ 26 ALM+ 7 27 ALM-1 SRV-RST 14 CLE 10 ALM-8 +24V 15 COM 0V 一定要使用双绞屏蔽线, 屏蔽层两端一定要接地! Be sure to use wisted COM+ 18 pair shielded wire, and 4.7 \mathbf{A} both ends of shielding SERON 9 SON 10 must be 使能继电器 grounded! 金属壳地 36 24V地 FG Enable relay Metal shell

位置控制方式接线图

layer

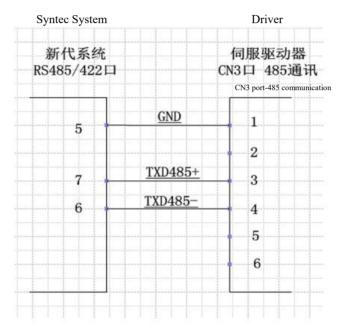
Wiring diagram of position control


Appendix 10 Wiring diagram of driver with HNC 21/22 system in driver distribution

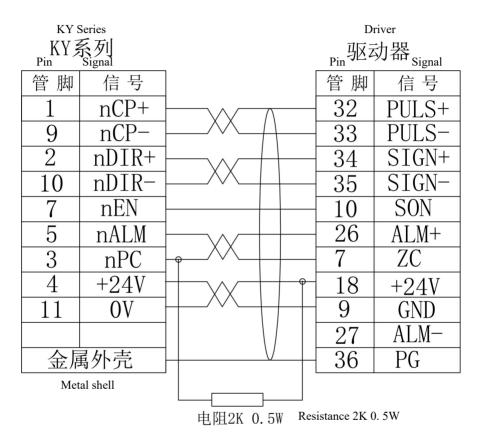
位置控制方式接线图

Wiring diagram of position control

Appendix 11 Wiring diagram of driver with HNC 18/19 system



位置控制方式接线图


Absolute value CN3 port wiring diagram

(Drivers and Syntec Systems)

Note: GND must be welded, otherwise communication will be interrupted.

Appendix 13 Wiring diagram of driver with Guangzhou Keyuan series system

Wiring diagram of position control mode

It is strictly forbidden to reproduce all or part of this manual without the permission of our company.

As the products are constantly updated, if there is any change, it will not be notified separately.

This product and instructions are for general industrial use. Please contact the manufacturer when it involves medical, aviation, aerospace, nuclear energy and other equipment directly related to life safety.

Раусис.сом

CNCmakers Limited Mobile: +86-139-25042139 (Whatsapp & Wechat) Tel: +86-138-24444158 Fax: +86-20-84185336 Skype: CNCmakers Email: payenc@payenc.com enc@CNCmakers.com Website: www.CNCmakers.com Online Shop: www.payenc.com Add: No.168, Xiadu Road, Haizhu District, Guangzhou, China 510300